909 resultados para BOLD signal instability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skeletal muscles can adapt to increased mechanical forces (or loading) by increasing the size and strength of the muscle. Knowledge of the molecular mechanisms by which muscle responds to increased loading may lead to the discovery of novel treatment strategies for muscle wasting and frailty. The objective of this research was to examine the temporal associations between the activation of specific signaling pathway intermediates and their potential upstream regulator(s) in response to increased muscle loading. Previous work has demonstrated that focal adhesion kinase (FAK) activity is increased in overloaded hypertrophying skeletal muscle. Thus FAK is a candidate for transducing the loading stimulus in skeletal muscle, potentially by activating phosphatidylinositol 3-kinase (PI3K) and members of the mitogen-activated protein kinase (MAPK) family. However, it was unknown if muscle overload would result in activation of PI3K or the MAPKs. Thus, this work seeks to characterized the temporal response of (1) MAPK phosphorylation (including Erk 2, p38 MAPK and JNK), (2) PI3K activity, and (3) FAK tyrosine phosphorylation in response to 24 hours of compensatory overload in the rat soleus and plantaris muscles. In both muscles, overload resulted in transient Increases in the phosphorylation state of Erk2 and JNK, which peaked within the first hour of overload and returned to baseline thereafter. In contrast, p38 MAPK phosphorylation remained elevated throughout the entire 24-hour overload period. Moreover, overload increased PI3K activity only, in the plantaris and only at 12 hours. Moreover, 24 hours of overload induced a significant increase in total protein content in the plantaris but not the soleus. Thus an increase in total muscle protein content within the 24-hour loading period was observed only in muscle exhibiting increased PI3K activity. Surprisingly, FAK tyrosine phosphorylation was not increased during the overload period in either muscle, indicating that PI3K activation and increased MAPK phosphorylation were independent of increased FAK tyrosine phosphorylation. In summary, increased PI3K activity and sustained elevation of p38 MAPK phosphorylation were associated with muscle overload, identifying these pathways as potential mediators of the early hypertrophic response to skeletal muscle overload. This suggests that stimuli or mechanisms that activate these pathways may reduce/minimize muscle wasting and frailty. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hematopoietic growth factors play important roles in regulating blood cell growth and development in vivo. In this work, we investigated the signaling mechanisms of two growth factors with clinical significance, erythropoietin (Epo) and granulocyte colony-stimulating factor (G-CSF). Epo is essential for the survival, proliferation and differentiation of red blood cell progenitors, while G-CSF plays an important role in controlling mature neutrophil production. To identify which amino acid(s) and/or motif in EpoR is responsible for cell survival, wild type or mutant EpoR isoforms were transfected into the growth factor-dependent 32D cell line. Proliferation and apoptosis assays demonstrated that an EpoR isoform that lacks intracellular tyrosine residues and is truncated after 321 amino acids in the cytoplasmic tail (EpoR 1-321) mediates Epo-dependent cell survival. Furthermore, in absence of fetal calf serum (FCS), Epo signaling through wild type or mutant receptors supported anti-apoptosis, but not proliferation during 72 hours in response to Epo. To investigate the signaling pathway by which EpoR regulates cell survival, a dominant negative Stat5b (dnStat5b) isoform was generated and coexpressed with EpoR in stable cell lines. Expression of dnStat5b causes a significant induction of apoptosis in the presence of Epo in cells expressing EpoR 1-321, indicating that Stat5 is essential for survival signaling through tyrosine independent sequences in the EpoR. In a second project to investigate G-CSF signaling, we studied mechanisms by which G-CSF regulates the expression of PU.1, an important transcription factor in myeloid and B cell development. We demonstrated, by immunoblot and real time RT-PCR, that PU.1 is induced by G-CSF ex vivo as well as in vivo. To test whether G-CSF signaling through Stat3 is required for PU.1 regulation, the upstream region of the PU.1 gene was analyzed for potential Stat3 binding motifs. Four potential sites were identified; chromatin immunoprecipitations demonstrated that G-CSF activated Stat3 binds to 3 of the 4 binding motifs. In addition, PU.1 induction by G-CSF was completely abrogated in bone marrow from hematopoietic conditional Stat3 knockout mice. These results indicate an important role for Stat3 in G-CSF-dependent PU.1 gene regulation. Collectively, our works demonstrate that Stat protein play important and diverse roles in hematopoietic growth factor signaling. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes asymptotically optimal tests for unstable parameter process under the feasible circumstance that the researcher has little information about the unstable parameter process and the error distribution, and suggests conditions under which the knowledge of those processes does not provide asymptotic power gains. I first derive a test under known error distribution, which is asymptotically equivalent to LR tests for correctly identified unstable parameter processes under suitable conditions. The conditions are weak enough to cover a wide range of unstable processes such as various types of structural breaks and time varying parameter processes. The test is then extended to semiparametric models in which the underlying distribution in unknown but treated as unknown infinite dimensional nuisance parameter. The semiparametric test is adaptive in the sense that its asymptotic power function is equivalent to the power envelope under known error distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular mechanisms responsible for the expansion and deletion of trinucleotide repeat sequences (TRS) are the focus of our studies. Several hereditary neurological diseases including Huntington's disease, myotonic dystrophy, and fragile X syndrome are associated with the instability of TRS. Using the well defined and controllable model system of Escherichia coli, the influences of three types of DNA incisions on genetic instability of CTG•CAG repeats were studied: DNA double-strand breaks (DSB), single-strand nicks, and single-strand gaps. The DNA incisions were generated in pUC19 derivatives by in vitro cleavage with restriction endonucleases. The cleaved DNA was then transformed into E. coli parental and mutant strains. Double-strand breaks induced deletions throughout the TRS region in an orientation dependent manner relative to the origin of replication. The extent of instability was enhanced by the repeat length and sequence (CTG•CAG vs. CGG•CCG). Mutations in recA and recBC increased deletions, mutations in recF stabilized the TRS, whereas mutations in ruvA had no effect. DSB were repaired by intramolecular recombination, versus an intermolecular gene conversion or crossover mechanism. 30 nt gaps formed a distinct 30 nt deletion product, whereas single strand nicks and gaps of 15 nts did not induce expansions or deletions. Formation of this deletion product required the CTG•CAG repeats to be present in the single-stranded region and was stimulated by E. coli DNA ligase, but was not dependent upon the RecFOR pathway. Models are presented to explain the DSB induced instabilities and formation of the 30 nucleotide deletion product. In addition to the in vitro creation of DSBs, several attempts to generate this incision in vivo with the use of EcoR I restriction modification systems were conducted. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal transducer and activator of transcription 3 (Stat3) is a signaling molecule that transduces signal from cell surface receptors, itself translocates into the nucleus, binds to consensus promoter sequences and activates gene transcription. Here, we showed that Stat3 is constitutively activated in both premalignant tumors (papillomas) and squamous cell carcinomas of mouse skin that is induced by topical treatment with an initiator 7,12-dimethylbenz[a]anthracene (DMBA) followed by a tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Additional data demonstrated that epidermal growth factor signaling contributes to the activation of Stat3 in this model. Using mice where Stat3 function is abrogated in keratinocytes via the Cre-LoxP system (K5Cre.Stat3 flox/flox), we demonstrated that Stat3 is required for de novo carcinogenesis since Stat3 deficiency leads to a complete abrogation of skin tumor development induced by DMBA and TPA. We subsequently showed that Stat3 plays a role in both the initiation and promotion stages of carcinogenesis. During initiation, Stat3 functions as an anti-apoptotic molecule for maintaining the survival of DNA-damaged keratinocyte stem cells. During promotion, Stat3 functions as a critical regulator for G1 to S phase cell cycle progression to confer selective clonal expansion of initiated cells into papillomas. On the other hand, using transgenic mice over-expressing a constitutively dimerized form of Stat3 (Stat3C) in keratinocytes (K5.Stat3C), we revealed a role for Stat3 in tumor progression. After treatment with DMBA and TPA, K5.Stat3C transgenic mice developed skin tumors with a shorter latency when 100% bypassed the premalignant stage and became carcinoma in situ. Histological and immunohistochemical analysis revealed these tumors as highly vascularized and poorly differentiated. More strikingly, these tumors exhibited invasion into surrounding mesenchymal tissue, some of which metastasized into lung. The tumor-mesenchymal front was characterized by partial loss of E-cadherin and elevation of vimentin, markers characterizing epithelial-mesenchymal transition. On the other hand, inhibition of Stat3 via a decoy oligonucleotide led to a significant reduction of tumor size in approximately 50% of all papillomas tested. In conclusion, we demonstrated that Stat3 plays a critical in all three stages (initiation, promotion and progression) of skin carcinogenesis, and it may potentially become a good target for cancer prevention and anti-cancer therapy. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular complex of sensory rhodopsin I (SRI) and its transducer HtrI mediate color-sensitive phototaxis in the archaeon Halobacterium salinarum. Orange light causes an attractant response by a one-photon reaction and white light causes a repellent response by a two-photon reaction. Three aspects of this molecular complex were explored: (i) We determined the stoichiometry of SRI and HtrI to be 2:2 by gene fusion analysis. A SRI-HtrI fusion protein was expressed in H. salinarum and shown to mediate 1-photon and 2-photon phototaxis responses comparable to wild-type complex. Disulfide crosslinking demonstrated that the fusion protein is a homodimer in the membrane. Measurement of photochemical reaction kinetics and pH titration of absorption spectra established that both SRI domains are complexed to HtrI in the fusion protein, and therefore the stoichiometry is 2:2. (ii) Cytoplasmic channel closure of SRI by HtrI, an important aspect of their interaction, was investigated by incremental HtrI truncation. We found that binding of the membrane-embedded portion of HtrI is insufficient for channel closure, whereas cytoplasmic extension of the second HtrI transmembrane helix by 13 residues blocks proton conduction through the channel as well as full-length HtrI. The closure activity is localized to 5 specific residues, each of which incrementally contributes to reduction of proton conductivity. Moreover, these same residues in the dark incrementally and proportionally increase the pKa of the Asp76 counterion to the protonated Schiff base chromophore. We conclude that this critical region of HtrI alters the dark conformation of SRI as well as light-induced channel opening. (iii) We developed a procedure for reconstituting HtrI-free SRI and the SRI/HtrI complex into liposomes, which exhibit photocycles with opened and closed cytoplasmic channels, respectively, as in the membrane. This opens the way for study of the light-induced conformational change and the interaction in vitro by fluorescence and spin-labeling. Single-cysteine mutations were introduced into helix F of SRI, labeled with a nitroxide spin probe and a fluorescence probe, reconstituted into proteoliposomes, and light-induced conformational changes detected in the complex. The probe signals can now be used as the readout of signaling to analyze mutants and the kinetics of signal relay. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are many diseases associated with the expansion of DNA repeats in humans. Myotonic dystrophy type 2 is one of such diseases, characterized by expansions of a (CCTG)•(CAGG) repeat tract in intron 1 of zinc finger protein 9 (ZNF9) in chromosome 3q21.3. The DM2 repeat tract contains a flanking region 5' to the tract that consists of a polymorphic repetitive sequence (TG)14-25(TCTG)4-11(CCTG) n. The (CCTG)•(CAGG) repeat is typically 11-26 repeats in persons without the disease, but can expand up to 11,000 repeats in affected individuals, which is the largest expansion seen in DNA repeat diseases to date. This DNA tract remains one of the least characterized disease-associated DNA repeats, and mechanisms causing the repeat expansion in humans have yet to be elucidated. Alternative, non B-DNA structures formed by the expanded repeats are typical in DNA repeat expansion diseases. These sequences may promote instability of the repeat tracts. I determined that slipped strand structure formation occurs for (CCTG)•(CAGG) repeats at a length of 42 or more. In addition, Z-DNA structure forms in the flanking human sequence adjacent to the (CCTG)•(CAGG) repeat tract. I have also performed genetic assays in E. coli cells and results indicate that the (CCTG)•(CAGG) repeats are more similar to the highly unstable (CTG)•(CAG) repeat tracts seen in Huntington's disease and myotonic dystrophy type 1, than to those of the more stable (ATTCT)•(AGAAT) repeat tracts of spinocerebellar ataxia type 10. This instability, however, is RecA-independent in the (CCTG)•(CAGG) and (ATTCT)•(AGAAT) repeats, whereas the instability is RecA-dependent in the (CTG)•(CAG) repeats. Structural studies of the (CCTG)•(CAGG) repeat tract and the flanking sequence, as well as genetic selection assays may reveal the mechanisms responsible for the repeat instability in E. coli, and this may lead to a better understanding of the mechanisms contributing to the human disease state. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SRI is unique among known photoreceptors in that it produces opposite signals depending on the color of light stimuli. Absorption of orange light (587 nm) triggers an attractant response by the cell, whereas absorption of orange light followed by near-UV light (373 run) triggers a repellent response. Using behavioral mutants that exhibit aberrant color-sensing ability, we tested a two-conformation equilibrium model, using FRET and EPR spectroscopy. The essence of the model applied to SRI-HtrI is that the complex exists in a metastable two-conformer equilibrium which is shifted in one direction by orange light absorption (producing an attractant signal) and in the opposite direction by a second UV-violet photon (producing a repellent signal). First, by FRET we found that the E-F cytoplasmic loop of SRI moves toward the RAMP domain of the HtrI transducer during the formation of the orange-light activated signaling state of the complex. This is the first localization of a change in the physical relationship between the receptor and transducer subunits of the complex and provides a structural property of the two proposed conformers that we can monitor. Second, EPR spectra of a spin label probe at this cytoplasmic position showed shifts in the dark in the mutants toward shorter or longer EF loop-RAMP distances, explaining their behavior in terms of their mutations causing pre-stimulus shifts into one or the other conformer. ^ Next, we applied a novel electrophysiological method for monitoring the directionality of proton movement during photoactivation of SRI, to investigate the process of proton transfer in the photoactive site from the chromophore to proton acceptors on both the wildtype and aberrant color-response mutants. We observed an unexpected and critical difference in the two signaling conformations of the SRI-HtrI complex. The finding is that the vectoriality (i.e. movement away or toward the cytoplasm) of the light-induced proton transfer from the chromophore to the protein is opposite in formation of the two conformations. Retinylidene proton transfer is a common critical process in rhodopsins and these results are the first to show differences in vectoriality in a rhodopsin receptor, and to demonstrate functional importance of the direction of proton transfer. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central dogma of molecular biology dictates that DNA is transcribed into RNA, which is later translated into protein. One of the early activators in this process is the transcription factor NF-κB. We have determined that an NF-κB inducer, CARMA3, is required for proper neural tube closure, similar to other NF-κB inducers. Using a genetic knockout of CARMA3, we demonstrated that it is required for Gαq-coupled GPCR-induced NF-κB activation. This is facilitated through a MAPK and IKK phosphorylation-independent mechanism, most likely by controlling NEMO-associated ubiquitination. We have also shown that CARMA3 is required for EGF and HRG-induced NF-κB activation. This activation requires the activity of both EGFR and HER2, as well as PKC. Again, we observed no defect in IKK phosphorylation, although we determined a clear defect in IKK activation. Finally, we have begun to determine the role of CARMA3 to both EGFR and HER2-induced tumorigenicity. By overexpressing a constitutive active mutant of HER2 in our CARMA3 WT and KO MEF cells, we have shown CARMA3 is important for HER2-driven soft agar colony growth. We have also shown that knockdown of endogenous CARMA3 in the EGFR-overexpressing A431 cell line abolishes EGF-induced NF-κB activation. These same cells have a dramatically reduced capacity to form colonies in soft agar as well. Using both mouse xenografts and a transgenic model of HER2-induced breast cancer, we have initiated studies which will help to determine the role of CARMA3 to in vivo tumorigenesis. Collectively, this work reveals novel roles for the CARMA3 protein in development, GPCR and EGFR/HER2 signaling. It also suggests that CARMA3 is involved in EGFR/HER2 mediated tumorigenesis, possibly indicating a novel therapeutic target for use in treatment of cancer. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The JAK-STAT pathway is a major signaling pathway involved in many biological processes including proliferation, apoptosis, and differentiation. Aberrant expression of STATs has been reported in multiple human cancers and murine mouse models of tumorigenesis. Previous studies from our lab and others have established a critical role for Stat3 in epithelial tumorigenesis, but the role of Stat1 is largely unknown. The current study was designed to explore the role of Stat1 during multistage skin carcinogenesis. Topical treatment with both TPA and the anthrone derivative chrysarobin (CHRY) led to rapid phosphorylation of Stat1 on both tyrosine (Tyr701) and serine (Ser727) residues in epidermis. CHRY treatment also led to upregulation of unphosphorylated Stat1 (uStat1) at later time points. In addition, CHRY treatment also led to upregulation of IRF-1 mRNA and protein which was dependent on Stat1. Further analyses demonstrated that topical treatment with CHRY but not TPA upregulated interferon-gamma (IFNg) mRNA in the epidermis and that the induction of both IRF-1 and uStat1 was dependent on IFNg signaling. Stat1 deficient (Stat1-/-) mice were highly resistant to skin tumor promotion by CHRY. In contrast, the tumor response (in terms of both papillomas and squamous cell carcinomas) was similar in Stat1-/- mice and wild-type littermates with TPA as the promoter. Histological evaluation of the proliferative response confirmed the data obtained from the tumor study for both TPA and CHRY. In addition, maximal induction of both cyclooxygenase-2 and inducible nitric oxide synthase in epidermis following treatment with CHRY was also dependent on the presence of functional Stat1. Following CHRY treatment, Stat1-/- mice exhibited reduced macrophage infiltration and reduced production of many immune cell derived chemokines/cytokines. These studies define a novel mechanism associated with skin tumor promotion by the anthrone class of tumor promoters involving upregulation of IFNg signaling in the epidermis and downstream signaling through activated (phosphorylated) Stat1 and subsequent upregulation of IRF-1 and uStat1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overexpression and/or amplification of HER2/neu is frequently detected in many human cancers. Activation of p185 tyrosine kinase can be achieved by point mutation, overexpression, deletion, and heterodimerization with other class I receptors. In this study I investigated the signal transduction pathways mediating the oncogenic signal of the point mutation-activated rat p185. I demonstrated that tyrosine phosphorylation of Shc and formation of Shc/Grb2 complex correlated to the transformation of NIH3T3 cells caused by the point mutation-activated rat HER2/neu. Furthermore, I observed that association with Shc was severely impaired by deletion of most of the major autophosphorylation sites of the point-mutated p185. The truncated p185 product, however, fully retained its ability to transform NIH3T3 cells, induce Shc tyrosine phosphorylation and Shc/Grb2 complex formation. These results suggest that tyrosine phosphorylation of Shc which allows formation of Shc/Grb2 complex may play an important role in cell transformation induced by the point mutation-activated p185, and that stable binding to mutant p185 may not be necessary for Shc to mediate this signaling pathway.^ Recent studies have suggested that formation of the complex containing Sos, Grb2 and Shc is important in coupling receptor tyrosine kinases to the Ras signaling pathway. To clarify the role of this trimer in the oncogenic signaling of the activated p185, I set out to interfere with the protein-protein interactions in Shc/Grb2/Sos complex by introducing Grb2 mutants with deletions in either amino- ($\Delta$N-Grb2) or carboxyl- ($\Delta$C-Grb2) terminal SH3 domains into B104-1-1 cells derived from NIH3T3 cells that express the point mutation-activated HER-2/neu. I found that the transformed phenotypes of the B104-1-1 cells were largely reversed by expression of the $\Delta$N-Grb2. The effect of the $\Delta$C-Grb2 on phenotypic reversion was much weaker. Biochemical analysis showed that the $\Delta$N-Grb2 was able to associate Shc but not the activated p185 nor Sos, while the $\Delta$C-Grb2 bound to Shc, the activated p185, and Sos. The p185-mediated Ras activation was severely inhibited by the $\Delta$N-Grb2 but not the $\Delta$C-Grb2. Taken together, these data demonstrate that interruption of the interaction between Shc and the endogenous Grb2 by the $\Delta$N-Grb2 is able to impair the oncogenic signaling of the mutation-activated p185, indicating that (i) the $\Delta$N-Grb2 functions as a strong dominant-negative mutant, (ii) Shc/Grb2/Sos pathway plays a major role in mediating the oncogenic signal of the mutation-activated p185. Unlike the $\Delta$N-Grb2, the $\Delta$C-Grb2 appears to be a relatively weak dominant-negative mutant, probably due to its ability to largely fulfill the biological functions of the wild-type Grb2. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterotrimeric G protein-mediated signal transduction is one of numerous means that cells utilize to respond to external stimuli. G proteins consist of α, β andγ subunits. Extracellular ligands bind to seven-transmembrane helix receptors, triggering conformational changes. This is followed by activation of coupled G proteins through the exchange of GDP for GTP on the Gα subunit. Once activated, Gα-GTP dissociates from the βγ dimer. Both of these two moieties can interact with downstream effectors, such as adenylyl cyclase, phospholipase C, phosphodiesterases, or ion channels, leading to a series of changes in cellular metabolism and physiology. ^ Neurospora crassa is a eukaryotic multicellular filamentous fungus, with asexual/vegetative and sexual phases to its life cycle. Three Gα (GNA-1, GNA-2, GNA-3) and one Gβ (GNB-1) proteins have been identified in this organism. This dissertation investigates GNA-1 and GNB-1 mediated signaling pathways in N. crassa. ^ GNA-1 was the first identified microbial Gα that belongs to a mammalian superfamily (Gαi). Deletion of GNA-1 leads to multiple defects in N. crassa. During the asexual cycle, Δgna-1 strains display a slower growth rate and delayed conidiation on solid medium. In the sexual cycle, the Δgna-1 mutant is male-fertile but female-sterile. Biochemical studies have shown that Δ gna-1 strains have lower adenosine 3′–5 ′ cyclic monophosphate (cAMP) levels than wild type under conditions where phenotypic defects are observed. In this thesis work, strains containing one of two GTPase-deficient gna-1 alleles (gna-1 R178C, gna-1Q204L) leading to constitutive activation of GNA-1 have been constructed and characterized. Activation of GNA-1 causes uncontrolled aerial hyphae proliferation, elevated sensitivity to heat and oxidative stresses, and lower carotenoid synthesis. To further study the function of GNA-1, constructs to enable expression of mammalian Gαi superfamily members were transformed into a Δ gna-1 strain, and complementation of Δgna-1 defects investigated. Gαs, which is not a member of Gα i superfamily was used as a control. These mammalian Gα genes were able to rescue the vegetative growth rate defect of the Δ gna-1 strain in the following order: Gαz > Gα o > Gαs > Gαt > Gαi. In contrast, only Gαo was able to complement the sexual defect of a Δgna-1 strain. With regard to the thermotolerance phenotype, none of the mammalian Gα genes restored the sensitivity to a wild type level. These results suggest that GNA-1 regulates two independent pathways during the vegetative and sexual cycles in N. crassa. ^ GNB-1, a G protein β subunit from N. crassa, was identified and its functions investigated in this thesis work. The sequence of the gnb-1 gene predicts a polypeptide of 358 residues with a molecular mass of 39.7 kDa. GNB-1 exhibits 91% identity to Cryphonectria parasitica CPGB-1, and also displays significant homology with human and Dictyostelium Gβ genes (∼66%). A Δ gnb-1 strain was constructed and shown to exhibit defects in asexual spore germination, vacuole number and size, mass accumulation and female fertility. A novel role for GNB-1 in regulation of GNA-1 and GNA-2 protein levels was also demonstrated. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Initiation of Myxococcus xanthus multicellular development requires both nutrient limitation and high cell density. The extracellular signal, A signal, which consists of a set of amino acids at specific concentrations, serves as a cell density signal in M. xanthus early development. A reporter gene, designated 4521, that requires both starvation and A signal for developmental expression was used to identify mutations in the signal transduction pathways. A group of point mutations located in the chromosomal sasB locus that bypasses both requirements was previously isolated. One of these point mutations, sasB7, was mapped to the sasS gene, which is predicted to encode a transmembrane histidine protein kinase required for normal development. SasS is a positive regulator of 4521 and a candidate A signal sensor. This dissertation continues the characterization of the sasB locus, focusing on the sasR gene and the functional relationship of SasS and SasR. ^ The sasR gene is located 2.2-kb downstream of sasS. It is predicted to encode an NtrC-like response regulator, which belongs to the family of sigma54 transcriptional activators. SasR is a positive regulator of 4521 gene and is required for normal development. The sasR mutant displays phenotypes similar to that of sasS mutant. Both SasS and SasR are required for the A-signal-dependent 4521 expression. Genetic epistasis analysis indicates that SasR functions downstream of SasS. Biochemical studies show that SasS has autokinase activity, and phosphorylated SasS is able to transfer its phosphate to SasR. We propose that SasS and SasR form a two-component signal transduction system in the A signal transduction pathway. ^ To search for the genes regulated by SasS and SasR, expression patterns of a group of developmental genes were compared in wild-type and sasS null mutant backgrounds. SasS and SasR were found to positively regulate sasN and 4521. The sasN gene was previously identified as a negative regulator of 4521, located at about 170-bp downstream of sasR. It is required for normal fruiting body development. Based on the above data, a regulatory network consisting of sasS, sasR, sasN, and 4521 is hypothesized, and the interactions of the components in this network can now be further studied. ^