966 resultados para BIODEGRADABLE MICROPARTICLES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of plants compounds for the control of insects has increased worldwide. This occurs because the vegetal insecticides contains biodegradable compounds, nontoxic products and potentially suitable for use in pest control. Plants of the family Annonaceae are standing out as biopesticides because they are bioactive naturally in addition to presenting cytotoxic activity, antitumor, vermifuge, antimicrobial, immunosuppressive, anti-emetic, inhibiting appetite, antimalarial and also insecticide. The insecticidal activity of Annonaceae is due to the presence of acetogenins, substances that act on mitochondria inhibiting the NADH -ubiquinone oxidoreductase, causing the death of insects. In this review we report the use of Annonaceae in insect control, showing that so far, only 42 species of Annonaceae have information insecticidal activity against just over 60 species of insect pests. This information shows that much research is still needed, especially to get to know the insecticidal activity of other Annonaceae species, in addition to its effects on insect pests not yet studied. So we will have as an alternative to sustainable development, new vegetal insecticides such as those obtained from different Annonaceae species, which can act as an additional tool to balance the excesses of agriculture chemical or conventional.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ginecologia, Obstetrícia e Mastologia - FMB

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Petroleum and its subproducts are considered a treat for the environmental quality because of the many environmental accidents that may occur during exploitation, transport and storage. A common remediation technique used in the contaminated areas is based on the use of surfactants, mainly the chemical ones, because they have low production costs. In the other hand, some microorganisms have indicate capacities of producing surfactants that emulsify substances and as result, offer a bigger contact surface for the microbiota degradation. This biossurfactants stand out in comparison with the chemical surfactants because they present lower micelar concentration values, are more tolerant for temperature and pH variation, because they are biodegradable, have low toxicity, higher emulsification and hydrocarbon solubilization index. In this way, after the surfactant application, a toxicity evaluation have to be made to identify the treatment effects. In soil, the activity of some microbial enzymes can show the environmental behavior of the contaminant under different treatment conditions. Dehydrogenase is one example of those enzymes that can demonstrate indirectly the effect of the pollutant on the soil microorganisms. The aim of this paper was to evaluate the toxicity after the addition of a surfactant and/or Pseudomonas aeruginosa LBI in soil contaminated by a mineral automotive lubricant. The previous mentioned bacteria are a potential biossurfactant (rhamnolipid) producer. In order to evaluate the toxicity, the dehydrogenase test was run. In this test, trifeniltetrazolium compound (TTC) after utilized as an electron acceptor, turns into trifenil formazan (TPF), that can be indirectly quantified using the absorbance measured by the spectrophotometer UV-visible. In this way, it was possible to quantify the dehydrogenase activity from the contaminated soil samples... (Complete abstract click electronic access below)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chitosan is a natural biodegradable polymer with great potential for pharmaceutical applications due to its biocompatibility, high charge density , nontoxicity and mucoadhesion. Gel formation can be obtained by the interactions of chitosans with low molecular counterions such as polyphosphates, sulphates and crosslinking with glutaraldehyde. This gelling property of chitosan allows a wide range of applications such as coating of pharmaceuticals and food products, gel entrapment of biochemicals, whole cells, microorganisms and algae. One of its main applications is the synthesis of microspheres for coating of pharmaceuticals , magnetic particles an other substances. In such a way, we can build targeted drug delivery systems. In the present work, we applied the method of spraying and coagulation. The resulting microspheres, then, were characterized by optical microscopy

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of polymeric materials has grown in recent years due to its high durability features, atoxicity, shaping versatility and environment resistance. However, while these features represent good advantages to several industry sectors, it results in one of the most serious environmental problems of contemporary society: the rising accumulation of these material, mainly due to the inadequate disposal of waste. Meanwhile, in order to minimize this problem, some mitigation techniques comes up (arises), among which the use of biodegradable polymers has been gaining attention. Because of their easily action of microorganisms, such material degrade more rapidly, becoming integrated to nature. Furthermore, due to the fact of biodegradation is a natural process, occurring through the action if micro-organisms in the environment itself, it is considered the “cleaner” alternative found so far to plastic components reincorporation in the nature. Among the micro-organisms capable of biodegradation process are the filamentous fungi. These micro-organisms have many advantages over the others, the major one being the capacity to produce a range of enzymes capable of degrading different materials. In this context, the present review made it possible to see the importance of this process as an agent of environmental preservation, suggest the use of blends to minimize the problems of cost and flexibility of biodegradable polymeric materials, as well as noting the lack of studies related to this subject nowadays

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years a great worldwide interest has arisen for the development of new technologies that enable the use of products with less environmental impact. The replacement of synthetic fiber plants is a possibility very important because this fiber is renewable, biodegradable and few cost and cause less environmental impact. Given the above, this work proposes to develop polymeric composites of epoxy resin and study the behavior of these materials. Both, the epoxy resin used as matrix in the manufacture of sapegrass fiber composite, as tree composites formed by: epoxy/unidirectional sapegrass long fiber, 75% epoxy/25% short fiber, by volume, and 80% epoxy/20% short fiber, by volume, were characterized by bending, and the composites produced with short fibers random were inspected by Optical Microscopy and Acoustics Inspection (C-Scan). For the analysis of the sapegrass fiber morphology, composites 75% epoxy/25% short fiber (sheet chopped) and 80% epoxy/20% short fiber images were obtained by optical microscope and the adhesion between polymer/fiber was visualized. As results, the flexural strength of composites epoxy/unidirectional long fibers, 75% epoxy/25% short fiber and 80% epoxy/20% short fiber were 70.36 MPa, 21.26 MPa, 25.07 MPa, respectively. Being that composite showed that the best results was made up of long fibers, because it had a value of higher flexural strength than other composites analyzed