900 resultados para BAYESIAN-INFERENCE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantifying the health effects associated with simultaneous exposure to many air pollutants is now a research priority of the US EPA. Bayesian hierarchical models (BHM) have been extensively used in multisite time series studies of air pollution and health to estimate health effects of a single pollutant adjusted for potential confounding of other pollutants and other time-varying factors. However, when the scientific goal is to estimate the impacts of many pollutants jointly, a straightforward application of BHM is challenged by the need to specify a random-effect distribution on a high-dimensional vector of nuisance parameters, which often do not have an easy interpretation. In this paper we introduce a new BHM formulation, which we call "reduced BHM", aimed at analyzing clustered data sets in the presence of a large number of random effects that are not of primary scientific interest. At the first stage of the reduced BHM, we calculate the integrated likelihood of the parameter of interest (e.g. excess number of deaths attributed to simultaneous exposure to high levels of many pollutants). At the second stage, we specify a flexible random-effect distribution directly on the parameter of interest. The reduced BHM overcomes many of the challenges in the specification and implementation of full BHM in the context of a large number of nuisance parameters. In simulation studies we show that the reduced BHM performs comparably to the full BHM in many scenarios, and even performs better in some cases. Methods are applied to estimate location-specific and overall relative risks of cardiovascular hospital admissions associated with simultaneous exposure to elevated levels of particulate matter and ozone in 51 US counties during the period 1999-2005.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider estimation of the causal effect of a treatment on an outcome from observational data collected in two phases. In the first phase, a simple random sample of individuals are drawn from a population. On these individuals, information is obtained on treatment, outcome, and a few low-dimensional confounders. These individuals are then stratified according to these factors. In the second phase, a random sub-sample of individuals are drawn from each stratum, with known, stratum-specific selection probabilities. On these individuals, a rich set of confounding factors are collected. In this setting, we introduce four estimators: (1) simple inverse weighted, (2) locally efficient, (3) doubly robust and (4)enriched inverse weighted. We evaluate the finite-sample performance of these estimators in a simulation study. We also use our methodology to estimate the causal effect of trauma care on in-hospital mortality using data from the National Study of Cost and Outcomes of Trauma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rise of evidence-based medicine as well as important progress in statistical methods and computational power have led to a second birth of the >200-year-old Bayesian framework. The use of Bayesian techniques, in particular in the design and interpretation of clinical trials, offers several substantial advantages over the classical statistical approach. First, in contrast to classical statistics, Bayesian analysis allows a direct statement regarding the probability that a treatment was beneficial. Second, Bayesian statistics allow the researcher to incorporate any prior information in the analysis of the experimental results. Third, Bayesian methods can efficiently handle complex statistical models, which are suited for advanced clinical trial designs. Finally, Bayesian statistics encourage a thorough consideration and presentation of the assumptions underlying an analysis, which enables the reader to fully appraise the authors' conclusions. Both Bayesian and classical statistics have their respective strengths and limitations and should be viewed as being complementary to each other; we do not attempt to make a head-to-head comparison, as this is beyond the scope of the present review. Rather, the objective of the present article is to provide a nonmathematical, reader-friendly overview of the current practice of Bayesian statistics coupled with numerous intuitive examples from the field of oncology. It is hoped that this educational review will be a useful resource to the oncologist and result in a better understanding of the scope, strengths, and limitations of the Bayesian approach.

Relevância:

20.00% 20.00%

Publicador: