948 resultados para BAYESIAN NETWORK
Resumo:
Electrical switching and differential scanning calorimetric studies are undertaken on bulk As20Te80-xGax glasses, to elucidate the network topological thresholds. It is found that these glasses exhibit a single glass transition (T-g) and two crystallization reactions (T-cl & T-c2) upon heating. It is also found that there is only a marginal change in T-g with the addition of up to about 10% of Ga; around this composition an increase is seen in 7, which culminates in a local maximum around x = 15. The decrease exhibited in T, beyond this composition, leads to a local minimum at x = 17.5. Further, the As20Te80-xGax glasses are found to exhibit memory type electrical switching. The switching voltages (VT) increase with the increase in gallium content and a local maximum is seen in V-tau around x = 15. VT is found to decrease with x thereafter, exhibiting a local minimum around x = 17.5. The composition dependence of T-cl is found to be very similar to that of V-T of As20Te80-xGax glasses. Based on the present results, it is proposed that the composition x = 15 and x = 17.5 correspond to the rigidity percolation and chemical thresholds, respectively, of As20Te80-xGax glasses. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The aim of this paper is to provide a Bayesian formulation of the so-called magnitude-based inference approach to quantifying and interpreting effects, and in a case study example provide accurate probabilistic statements that correspond to the intended magnitude-based inferences. The model is described in the context of a published small-scale athlete study which employed a magnitude-based inference approach to compare the effect of two altitude training regimens (live high-train low (LHTL), and intermittent hypoxic exposure (IHE)) on running performance and blood measurements of elite triathletes. The posterior distributions, and corresponding point and interval estimates, for the parameters and associated effects and comparisons of interest, were estimated using Markov chain Monte Carlo simulations. The Bayesian analysis was shown to provide more direct probabilistic comparisons of treatments and able to identify small effects of interest. The approach avoided asymptotic assumptions and overcame issues such as multiple testing. Bayesian analysis of unscaled effects showed a probability of 0.96 that LHTL yields a substantially greater increase in hemoglobin mass than IHE, a 0.93 probability of a substantially greater improvement in running economy and a greater than 0.96 probability that both IHE and LHTL yield a substantially greater improvement in maximum blood lactate concentration compared to a Placebo. The conclusions are consistent with those obtained using a ‘magnitude-based inference’ approach that has been promoted in the field. The paper demonstrates that a fully Bayesian analysis is a simple and effective way of analysing small effects, providing a rich set of results that are straightforward to interpret in terms of probabilistic statements.
Resumo:
In this paper we focus on the challenging problem of place categorization and semantic mapping on a robot with-out environment-specific training. Motivated by their ongoing success in various visual recognition tasks, we build our system upon a state-of-the-art convolutional network. We overcome its closed-set limitations by complementing the network with a series of one-vs-all classifiers that can learn to recognize new semantic classes online. Prior domain knowledge is incorporated by embedding the classification system into a Bayesian filter framework that also ensures temporal coherence. We evaluate the classification accuracy of the system on a robot that maps a variety of places on our campus in real-time. We show how semantic information can boost robotic object detection performance and how the semantic map can be used to modulate the robot’s behaviour during navigation tasks. The system is made available to the community as a ROS module.
Resumo:
An estimate of the groundwater budget at the catchment scale is extremely important for the sustainable management of available water resources. Water resources are generally subjected to over-exploitation for agricultural and domestic purposes in agrarian economies like India. The double water-table fluctuation method is a reliable method for calculating the water budget in semi-arid crystalline rock areas. Extensive measurements of water levels from a dense network before and after the monsoon rainfall were made in a 53 km(2)atershed in southern India and various components of the water balance were then calculated. Later, water level data underwent geostatistical analyses to determine the priority and/or redundancy of each measurement point using a cross-validation method. An optimal network evolved from these analyses. The network was then used in re-calculation of the water-balance components. It was established that such an optimized network provides far fewer measurement points without considerably changing the conclusions regarding groundwater budget. This exercise is helpful in reducing the time and expenditure involved in exhaustive piezometric surveys and also in determining the water budget for large watersheds (watersheds greater than 50 km(2)).
Resumo:
Increased emphasis on rotorcraft performance and perational capabilities has resulted in accurate computation of aerodynamic stability and control parameters. System identification is one such tool in which the model structure and parameters such as aerodynamic stability and control derivatives are derived. In the present work, the rotorcraft aerodynamic parameters are computed using radial basis function neural networks (RBFN) in the presence of both state and measurement noise. The effect of presence of outliers in the data is also considered. RBFN is found to give superior results compared to finite difference derivatives for noisy data. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Accelerator mass spectrometry (AMS) is an ultrasensitive technique for measuring the concentration of a single isotope. The electric and magnetic fields of an electrostatic accelerator system are used to filter out other isotopes from the ion beam. The high velocity means that molecules can be destroyed and removed from the measurement background. As a result, concentrations down to one atom in 10^16 atoms are measurable. This thesis describes the construction of the new AMS system in the Accelerator Laboratory of the University of Helsinki. The system is described in detail along with the relevant ion optics. System performance and some of the 14C measurements done with the system are described. In a second part of the thesis, a novel statistical model for the analysis of AMS data is presented. Bayesian methods are used in order to make the best use of the available information. In the new model, instrumental drift is modelled with a continuous first-order autoregressive process. This enables rigorous normalization to standards measured at different times. The Poisson statistical nature of a 14C measurement is also taken into account properly, so that uncertainty estimates are much more stable. It is shown that, overall, the new model improves both the accuracy and the precision of AMS measurements. In particular, the results can be improved for samples with very low 14C concentrations or measured only a few times.
Resumo:
Deep convolutional neural networks (DCNNs) have been employed in many computer vision tasks with great success due to their robustness in feature learning. One of the advantages of DCNNs is their representation robustness to object locations, which is useful for object recognition tasks. However, this also discards spatial information, which is useful when dealing with topological information of the image (e.g. scene labeling, face recognition). In this paper, we propose a deeper and wider network architecture to tackle the scene labeling task. The depth is achieved by incorporating predictions from multiple early layers of the DCNN. The width is achieved by combining multiple outputs of the network. We then further refine the parsing task by adopting graphical models (GMs) as a post-processing step to incorporate spatial and contextual information into the network. The new strategy for a deeper, wider convolutional network coupled with graphical models has shown promising results on the PASCAL-Context dataset.
Resumo:
This paper describes the types of support that teachers are accessing through the Social Network Site (SNS) 'Facebook'. It describes six ways in which teachers support one another within online groups. It presents evidence from a study of a large, open group of teachers online over a twelve week period, repeated with multiple groups a year later over a one week period. The findings suggest that large open groups in SNSs can be a useful source of pragmatic advice for teachers but that these groups are rarely a place for reflection on or feedback about teaching practice.
Resumo:
This study views each protein structure as a network of noncovalent connections between amino acid side chains. Each amino acid in a protein structure is a node, and the strength of the noncovalent interactions between two amino acids is evaluated for edge determination. The protein structure graphs (PSGs) for 232 proteins have been constructed as a function of the cutoff of the amino acid interaction strength at a few carefully chosen values. Analysis of such PSGs constructed on the basis of edge weights has shown the following: 1), The PSGs exhibit a complex topological network behavior, which is dependent on the interaction cutoff chosen for PSG construction. 2), A transition is observed at a critical interaction cutoff, in all the proteins, as monitored by the size of the largest cluster (giant component) in the graph. Amazingly, this transition occurs within a narrow range of interaction cutoff for all the proteins, irrespective of the size or the fold topology. And 3), the amino acid preferences to be highly connected (hub frequency) have been evaluated as a function of the interaction cutoff. We observe that the aromatic residues along with arginine, histidine, and methionine act as strong hubs at high interaction cutoffs, whereas the hydrophobic leucine and isoleucine residues get added to these hubs at low interaction cutoffs, forming weak hubs. The hubs identified are found to play a role in bringing together different secondary structural elements in the tertiary structure of the proteins. They are also found to contribute to the additional stability of the thermophilic proteins when compared to their mesophilic counterparts and hence could be crucial for the folding and stability of the unique three-dimensional structure of proteins. Based on these results, we also predict a few residues in the thermophilic and mesophilic proteins that can be mutated to alter their thermal stability.
Resumo:
We share our experience in planning, designing and deploying a wireless sensor network of one square kilometre area. Environmental data such as soil moisture, temperature, barometric pressure, and relative humidity are collected in this area situated in the semi-arid region of Karnataka, India. It is a hope that information derived from this data will benefit the marginal farmer towards improving his farming practices. Soon after establishing the need for such a project, we begin by showing the big picture of such a data gathering network, the software architecture we have used, the range measurements needed for determining the sensor density, and the packaging issues that seem to play a crucial role in field deployments. Our field deployment experiences include designing with intermittent grid power, enhancing software tools to aid quicker and effective deployment, and flash memory corruption. The first results on data gathering look encouraging.
Resumo:
Passive wavelength/time fiber-optic code division multiple access (WIT FO-CDMA) network is a viable option for highspeed access networks. Constructions of 2-D codes, suitable for incoherent WIT FO-CDMA, have been proposed to reduce the time spread of the 1-D sequences. The 2-D constructions can be broadly classified as 1) hybrid codes and 2) matrix codes. In our earlier work [141, we had proposed a new family of wavelength/time multiple-pulses-per-row (W/T MPR) matrix codes which have good cardinality, spectral efficiency and at the same time have the lowest off-peak autocorrelation and cross-correlation values equal to unity. In this paper we propose an architecture for a WIT MPR FO-CDAM network designed using the presently available devices and technology. A complete FO-CDMA network of ten users is simulated, for various number of simultaneous users and shown that 0 --> 1 errors can occur only when the number of interfering users is at least equal to the threshold value.
Resumo:
We study the responses of a cultured neural network when it is exposed to epileptogenesis glutamate injury causing epilepsy and subsequent treatment with phenobarbital by constructing connectivity map of neurons using correlation matrix. This study is particularly useful in understanding the pharmaceutical drug induced changes in the neuronal network properties with insights into changes at the systems biology level. (C) 2010 American Institute of Physics. [doi:10.1063/1.3398025]
Resumo:
A large part of today's multi-core chips is interconnect. Increasing communication complexity has made essential new strategies for interconnects, such as Network on Chip. Power dissipation in interconnects has become a substantial part of the total power dissipation. Techniques to reduce interconnect power have thus become a necessity. In this paper, we present a design methodology that gives values of bus width for interconnect links, frequency of operation for routers, in Network on Chip scenario that satisfy required throughput and dissipate minimal switching power. We develop closed form analytical expressions for the power dissipation, with bus width and frequency as variables and then use Lagrange multiplier method to arrive at the optimal values. We present a 4 port router in 90 nm technology library as case study. The results obtained from analysis are discussed.
Resumo:
RECONNECT is a Network-on-Chip using a honeycomb topology. In this paper we focus on properties of general rules applicable to a variety of routing algorithms for the NoC which take into account the missing links of the honeycomb topology when compared to a mesh. We also extend the original proposal [5] and show a method to insert and extract data to and from the network. Access Routers at the boundary of the execution fabric establish connections to multiple periphery modules and create a torus to decrease the node distances. Our approach is scalable and ensures homogeneity among the compute elements in the NoC. We synthesized and evaluated the proposed enhancement in terms of power dissipation and area. Our results indicate that the impact of necessary alterations to the fabric is negligible and effects the data transfer between the fabric and the periphery only marginally.
Resumo:
We report on the first search for top-quark production via flavor-changing neutral-current (FCNC) interactions in the non-standard-model process u(c)+g -> t using ppbar collision data collected by the CDF II detector. The data set corresponds to an integrated luminosity of 2.2/fb. The candidate events feature the signature of semileptonic top-quark decays and are classified as signal-like or background-like by an artificial neural network trained on simulated events. The observed discriminant distribution is in good agreement with the one predicted by the standard model and provides no evidence for FCNC top-quark production, resulting in a Bayesian upper limit on the production cross section sigma (u(c)+g -> t) u+g) c+g)