973 resultados para Atomic and Molecular Physics, and Optics
Resumo:
Predicted 20 years ago, positron binding to neutral atoms has not yet been observed experimentally. A scheme is proposed to detect positron-atom bound states by colliding Rydberg positronium (Ps) with neutral atoms. Estimates of the charge-transfer reaction cross section are obtained using the first Born approximation for a selection of neutral atom targets and a wide range of incident Ps energies and principal quantum numbers. We also estimate the corresponding Ps ionization cross section. The accuracy of the calculations is tested by comparison with earlier predictions for charge transfer in Ps collisions with hydrogen and antihydrogen. We describe an existing Rydberg Ps beam suitable for producing positron-atom bound states and estimate signal rates based on the calculated cross sections and realistic experimental parameters. We conclude that the proposed methodology is capable of producing such states and of testing theoretical predictions of their binding energies.
Resumo:
R-matrix with time-dependence theory is applied to electron-impact ionisation processes for He in the S-wave model. Cross sections for electron-impact excitation, ionisation and ionisation with excitation for impact energies between 25 and 225 eV are in excellent agreement with benchmark cross sections. Ultra-fast dynamics induced by a scattering event is observed through time-dependent signatures associated with autoionisation from doubly excited states. Further insight into dynamics can be obtained through examination of the spin components of the time-dependent wavefunction.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Atomic layer deposition (ALD) has been recognized as a promising method to deposit conformal and uniform thin film of copper for future electronic devices. However, many aspects of the reaction mechanism and the surface chemistry of copper ALD remain unclear. In this paper, we employ plane wave density functional theory (DFT) to study the transmetalation ALD reaction of copper dimethylamino-2-propoxide [Cu(dmap)2] and diethylzinc [Et2Zn] that was realized experimentally by Lee et al. [ Angew. Chem., Int. Ed. 2009, 48, 4536−4539]. We find that the Cu(dmap)2 molecule adsorbs and dissociates through the scission of one or two Cu–O bonds into surface-bound dmap and Cu(dmap) fragments during the copper pulse. As Et2Zn adsorbs on the surface covered with Cu(dmap) and dmap fragments, butane formation and desorption was found to be facilitated by the surrounding ligands, which leads to one reaction mechanism, while the migration of ethyl groups to the surface leads to another reaction mechanism. During both reaction mechanisms, ligand diffusion and reordering are generally endothermic processes, which may result in residual ligands blocking the surface sites at the end of the Et2Zn pulse, and in residual Zn being reduced and incorporated as an impurity. We also find that the nearby ligands play a cooperative role in lowering the activation energy for formation and desorption of byproducts, which explains the advantage of using organometallic precursors and reducing agents in Cu ALD. The ALD growth rate estimated for the mechanism is consistent with the experimental value of 0.2 Å/cycle. The proposed reaction mechanisms provide insight into ALD processes for copper and other transition metals.
Resumo:
A two stage approach to performing ab initio calculations on medium and large sized molecules is described. The first step is to perform SCF calculations on small molecules or molecular fragments using the OPIT Program. This employs a small basis set of spherical and p-type Gaussian functions. The Gaussian functions can be identified very closely with atomic cores, bond pairs, lone pairs, etc. The position and exponent of any of the Gaussian functions can be varied by OPIT to produce a small but fully optimised basis set. The second stage is the molecular fragments method. As an example of this, Gaussian exponents and distances are taken from an OPIT calculation on ethylene and used unchanged in a single SCF calculation on benzene. Approximate ab initio calculations of this type give much useful information and are often preferable to semi-empirical approaches, since the nature of the approximations involved is much better defined.
Resumo:
U of I Only
Resumo:
Nanotechnology has revolutionised humanity's capability in building microscopic systems by manipulating materials on a molecular and atomic scale. Nan-osystems are becoming increasingly smaller and more complex from the chemical perspective which increases the demand for microscopic characterisation techniques. Among others, transmission electron microscopy (TEM) is an indispensable tool that is increasingly used to study the structures of nanosystems down to the molecular and atomic scale. However, despite the effectivity of this tool, it can only provide 2-dimensional projection (shadow) images of the 3D structure, leaving the 3-dimensional information hidden which can lead to incomplete or erroneous characterization. One very promising inspection method is Electron Tomography (ET), which is rapidly becoming an important tool to explore the 3D nano-world. ET provides (sub-)nanometer resolution in all three dimensions of the sample under investigation. However, the fidelity of the ET tomogram that is achieved by current ET reconstruction procedures remains a major challenge. This thesis addresses the assessment and advancement of electron tomographic methods to enable high-fidelity three-dimensional investigations. A quality assessment investigation was conducted to provide a quality quantitative analysis of the main established ET reconstruction algorithms and to study the influence of the experimental conditions on the quality of the reconstructed ET tomogram. Regular shaped nanoparticles were used as a ground-truth for this study. It is concluded that the fidelity of the post-reconstruction quantitative analysis and segmentation is limited, mainly by the fidelity of the reconstructed ET tomogram. This motivates the development of an improved tomographic reconstruction process. In this thesis, a novel ET method was proposed, named dictionary learning electron tomography (DLET). DLET is based on the recent mathematical theorem of compressed sensing (CS) which employs the sparsity of ET tomograms to enable accurate reconstruction from undersampled (S)TEM tilt series. DLET learns the sparsifying transform (dictionary) in an adaptive way and reconstructs the tomogram simultaneously from highly undersampled tilt series. In this method, the sparsity is applied on overlapping image patches favouring local structures. Furthermore, the dictionary is adapted to the specific tomogram instance, thereby favouring better sparsity and consequently higher quality reconstructions. The reconstruction algorithm is based on an alternating procedure that learns the sparsifying dictionary and employs it to remove artifacts and noise in one step, and then restores the tomogram data in the other step. Simulation and real ET experiments of several morphologies are performed with a variety of setups. Reconstruction results validate its efficiency in both noiseless and noisy cases and show that it yields an improved reconstruction quality with fast convergence. The proposed method enables the recovery of high-fidelity information without the need to worry about what sparsifying transform to select or whether the images used strictly follow the pre-conditions of a certain transform (e.g. strictly piecewise constant for Total Variation minimisation). This can also avoid artifacts that can be introduced by specific sparsifying transforms (e.g. the staircase artifacts the may result when using Total Variation minimisation). Moreover, this thesis shows how reliable elementally sensitive tomography using EELS is possible with the aid of both appropriate use of Dual electron energy loss spectroscopy (DualEELS) and the DLET compressed sensing algorithm to make the best use of the limited data volume and signal to noise inherent in core-loss electron energy loss spectroscopy (EELS) from nanoparticles of an industrially important material. Taken together, the results presented in this thesis demonstrates how high-fidelity ET reconstructions can be achieved using a compressed sensing approach.
Resumo:
Single-cell functional proteomics assays can connect genomic information to biological function through quantitative and multiplex protein measurements. Tools for single-cell proteomics have developed rapidly over the past 5 years and are providing unique opportunities. This thesis describes an emerging microfluidics-based toolkit for single cell functional proteomics, focusing on the development of the single cell barcode chips (SCBCs) with applications in fundamental and translational cancer research.
The microchip designed to simultaneously quantify a panel of secreted, cytoplasmic and membrane proteins from single cells will be discussed at the beginning, which is the prototype for subsequent proteomic microchips with more sophisticated design in preclinical cancer research or clinical applications. The SCBCs are a highly versatile and information rich tool for single-cell functional proteomics. They are based upon isolating individual cells, or defined number of cells, within microchambers, each of which is equipped with a large antibody microarray (the barcode), with between a few hundred to ten thousand microchambers included within a single microchip. Functional proteomics assays at single-cell resolution yield unique pieces of information that significantly shape the way of thinking on cancer research. An in-depth discussion about analysis and interpretation of the unique information such as functional protein fluctuations and protein-protein correlative interactions will follow.
The SCBC is a powerful tool to resolve the functional heterogeneity of cancer cells. It has the capacity to extract a comprehensive picture of the signal transduction network from single tumor cells and thus provides insight into the effect of targeted therapies on protein signaling networks. We will demonstrate this point through applying the SCBCs to investigate three isogenic cell lines of glioblastoma multiforme (GBM).
The cancer cell population is highly heterogeneous with high-amplitude fluctuation at the single cell level, which in turn grants the robustness of the entire population. The concept that a stable population existing in the presence of random fluctuations is reminiscent of many physical systems that are successfully understood using statistical physics. Thus, tools derived from that field can probably be applied to using fluctuations to determine the nature of signaling networks. In the second part of the thesis, we will focus on such a case to use thermodynamics-motivated principles to understand cancer cell hypoxia, where single cell proteomics assays coupled with a quantitative version of Le Chatelier's principle derived from statistical mechanics yield detailed and surprising predictions, which were found to be correct in both cell line and primary tumor model.
The third part of the thesis demonstrates the application of this technology in the preclinical cancer research to study the GBM cancer cell resistance to molecular targeted therapy. Physical approaches to anticipate therapy resistance and to identify effective therapy combinations will be discussed in detail. Our approach is based upon elucidating the signaling coordination within the phosphoprotein signaling pathways that are hyperactivated in human GBMs, and interrogating how that coordination responds to the perturbation of targeted inhibitor. Strongly coupled protein-protein interactions constitute most signaling cascades. A physical analogy of such a system is the strongly coupled atom-atom interactions in a crystal lattice. Similar to decomposing the atomic interactions into a series of independent normal vibrational modes, a simplified picture of signaling network coordination can also be achieved by diagonalizing protein-protein correlation or covariance matrices to decompose the pairwise correlative interactions into a set of distinct linear combinations of signaling proteins (i.e. independent signaling modes). By doing so, two independent signaling modes – one associated with mTOR signaling and a second associated with ERK/Src signaling have been resolved, which in turn allow us to anticipate resistance, and to design combination therapies that are effective, as well as identify those therapies and therapy combinations that will be ineffective. We validated our predictions in mouse tumor models and all predictions were borne out.
In the last part, some preliminary results about the clinical translation of single-cell proteomics chips will be presented. The successful demonstration of our work on human-derived xenografts provides the rationale to extend our current work into the clinic. It will enable us to interrogate GBM tumor samples in a way that could potentially yield a straightforward, rapid interpretation so that we can give therapeutic guidance to the attending physicians within a clinical relevant time scale. The technical challenges of the clinical translation will be presented and our solutions to address the challenges will be discussed as well. A clinical case study will then follow, where some preliminary data collected from a pediatric GBM patient bearing an EGFR amplified tumor will be presented to demonstrate the general protocol and the workflow of the proposed clinical studies.
Resumo:
Metallic glasses (MGs) are a relatively new class of materials discovered in 1960 and lauded for its high strengths and superior elastic properties. Three major obstacles prevent their widespread use as engineering materials for nanotechnology and industry: 1) their lack of plasticity mechanisms for deformation beyond the elastic limit, 2) their disordered atomic structure, which prevents effective study of their structure-to-property relationships, and 3) their poor glass forming ability, which limits bulk metallic glasses to sizes on the order of centimeters. We focused on understanding the first two major challenges by observing the mechanical properties of nanoscale metallic glasses in order to gain insight into its atomic-level structure and deformation mechanisms. We found that anomalous stable plastic flow emerges in room-temperature MGs at the nanoscale in wires as little as ~100 nanometers wide regardless of fabrication route (ion-irradiated or not). To circumvent experimental challenges in characterizing the atomic-level structure, extensive molecular dynamics simulations were conducted using approximated (embedded atom method) potentials to probe the underlying processes that give rise to plasticity in nanowires. Simulated results showed that mechanisms of relaxation via the sample free surfaces contribute to tensile ductility in these nanowires. Continuing with characterizing nanoscale properties, we studied the fracture properties of nano-notched MGnanowires and the compressive response of MG nanolattices at cryogenic (~130 K) temperatures. We learned from these experiments that nanowires are sensitive to flaws when the (amorphous) microstructure does not contribute stress concentrations, and that nano-architected structures with MG nanoribbons are brittle at low temperatures except when elastic shell buckling mechanisms dominate at low ribbon thicknesses (~20 nm), which instead gives rise to fully recoverable nanostructures regardless of temperature. Finally, motivated by understanding structure-to-property relationships in MGs, we studied the disordered atomic structure using a combination of in-situ X-ray tomography and X-ray diffraction in a diamond anvil cell and molecular dynamics simulations. Synchrotron X-ray experiments showed the progression of the atomic-level structure (in momentum space) and macroscale volume under increasing hydrostatic pressures. Corresponding simulations provided information on the real space structure, and we found that the samples displayed fractal scaling (rd ∝ V, d < 3) at short length scales (< ~8 Å), and exhibited a crossover to a homogeneous scaling (d = 3) at long length scales. We examined this underlying fractal structure of MGs with parallels to percolation clusters and discuss the implications of this structural analogy to MG properties and the glass transition phenomenon.
Resumo:
The high velocity of free atoms associated with the thermal motion, together with the velocity distribution of atoms has imposed the ultimate limitation on the precision of ultrahigh resolution spectroscopy. A sample consisting of low velocity atoms would provide a substantial improvement in spectroscopy resolution. To overcome the problem of thermal motion, atomic physicists have pursued two goals; first, the reduction of the thermal motion (cooling); and second, the confinement of the atoms by means of electromagnetic fields (trapping). Cooling carried sufficiently far, eliminates the motional problems, whereas trapping allows for long observation times. In this work the laser cooling and trapping of an argon atomic beam will be discussed. The experiments involve a time-of-flight spectroscopy on metastable argon atoms. Laser deceleration or cooling of atoms is achieved by counter propagating a photon against an atomic beam of metastable atoms. The solution to the Doppler shift problem is achieved using spatially varying magnetic field along the beam path to Zeeman shift the atomic resonance frequency so as to keep the atoms in resonance with a fixed frequency cooling laser. For trapping experiments a Magnetooptical trap (MOT) will be used. The MOT is formed by three pairs of counter-propagating laser beams with mutual opposite circular polarization and a frequency tuned slightly below the center of the atomic resonance and superimposed on a magnetic quadrupole field.
Resumo:
Guarana seeds have the highest caffeine concentration among plants accumulating purine alkaloids, but in contrast with coffee and tea, practically nothing is known about caffeine metabolism in this Amazonian plant. In this study, the levels of purine alkaloids in tissues of five guarana cultivars were determined. Theobromine was the main alkaloid that accumulated in leaves, stems, inflorescences and pericarps of fruit, while caffeine accumulated in the seeds and reached levels from 3.3% to 5.8%. In all tissues analysed, the alkaloid concentration, whether theobromine or caffeine, was higher in young/immature tissues, then decreasing with plant development/maturation. Caffeine synthase activity was highest in seeds of immature fruit. A nucleotide sequence (PcCS) was assembled with sequences retrieved from the EST database REALGENE using sequences of caffeine synthase from coffee and tea, whose expression was also highest in seeds from immature fruit. The PcCS has 1083bp and the protein sequence has greater similarity and identity with the caffeine synthase from cocoa (BTS1) and tea (TCS1). A recombinant PcCS allowed functional characterization of the enzyme as a bifunctional CS, able to catalyse the methylation of 7-methylxanthine to theobromine (3,7-dimethylxanthine), and theobromine to caffeine (1,3,7-trimethylxanthine), respectively. Among several substrates tested, PcCS showed higher affinity for theobromine, differing from all other caffeine synthases described so far, which have higher affinity for paraxanthine. When compared to previous knowledge on the protein structure of coffee caffeine synthase, the unique substrate affinity of PcCS is probably explained by the amino acid residues found in the active site of the predicted protein.
Resumo:
The epididymis has an important role in the maturation of sperm for fertilization, but little is known about the epididymal molecules involved in sperm modifications during this process. We have previously described the expression pattern for an antigen in epididymal epithelial cells that reacts with the monoclonal antibody (mAb) TRA 54. Immunohistochemical and immunoblotting analyses suggest that the epitope of the epididymal antigen probably involves a sugar moiety that is released into the epididymal lumen in an androgen-dependent manner and subsequently binds to luminal sperm. Using column chromatography, SDS-PAGE with in situ digestion and mass spectrometry, we have identified the protein recognized by mAb TRA 54 in mouse epididymal epithelial cells. The ∼65 kDa protein is part of a high molecular mass complex (∼260 kDa) that is also present in the sperm acrosomal vesicle and is completely released after the acrosomal reaction. The amino acid sequence of the protein corresponded to that of albumin. Immunoprecipitates with anti-albumin antibody contained the antigen recognized by mAb TRA 54, indicating that the epididymal molecule recognized by mAb TRA 54 is albumin. RT-PCR detected albumin mRNA in the epididymis and fertilization assays in vitro showed that the glycoprotein complex containing albumin was involved in the ability of sperm to recognize and penetrate the egg zona pellucida. Together, these results indicate that epididymal-derived albumin participates in the formation of a high molecular mass glycoprotein complex that has an important role in egg fertilization.
Resumo:
As graphene has become one of the most important materials, there is renewed interest in other similar structures. One example is silicene, the silicon analogue of graphene. It shares some of the remarkable graphene properties, such as the Dirac cone, but presents some distinct ones, such as a pronounced structural buckling. We have investigated, through density functional based tight-binding (DFTB), as well as reactive molecular dynamics (using ReaxFF), the mechanical properties of suspended single-layer silicene. We calculated the elastic constants, analyzed the fracture patterns and edge reconstructions. We also addressed the stress distributions, unbuckling mechanisms and the fracture dependence on the temperature. We analysed the differences due to distinct edge morphologies, namely zigzag and armchair.
Resumo:
The taxonomic status of a disjunctive population of Phyllomedusa from southern Brazil was diagnosed using molecular, chromosomal, and morphological approaches, which resulted in the recognition of a new species of the P. hypochondrialis group. Here, we describe P. rustica sp. n. from the Atlantic Forest biome, found in natural highland grassland formations on a plateau in the south of Brazil. Phylogenetic inferences placed P. rustica sp. n. in a subclade that includes P. rhodei + all the highland species of the clade. Chromosomal morphology is conservative, supporting the inference of homologies among the karyotypes of the species of this genus. Phyllomedusa rustica is apparently restricted to its type-locality, and we discuss the potential impact on the strategies applied to the conservation of the natural grassland formations found within the Brazilian Atlantic Forest biome in southern Brazil. We suggest that conservation strategies should be modified to guarantee the preservation of this species.
Resumo:
Although several treatments for tendon lesions have been proposed, successful tendon repair remains a great challenge for orthopedics, especially considering the high incidence of re-rupture of injured tendons. Our aim was to evaluate the pharmacological potential of Aloe vera on the content and arrangement of glycosaminoglycans (GAGs) during tendon healing, which was based on the effectiveness of A. vera on collagen organization previously observed by our group. In rats, a partial calcaneal tendon transection was performed with subsequent topical A. vera application at the injury site. The tendons were treated with A. vera ointment for 7 days and excised on the 7(th) , 14(th) , or 21(st) day post-surgery. Control rats received ointment without A. vera. A higher content of GAGs and a lower amount of dermatan sulfate were detected in the A. vera-treated group on the 14(th) day compared with the control. Also at 14 days post-surgery, a lower dichroic ratio in toluidine blue stained sections was observed in A. vera-treated tendons compared with the control. No differences were observed in the chondroitin-6-sulfate and TGF-β1 levels between the groups, and higher amount of non-collagenous proteins was detected in the A. vera-treated group on the 21(st) day, compared with the control group. No differences were observed in the number of fibroblasts, inflammatory cells and blood vessels between the groups. The application of A. vera during tendon healing modified the arrangement of GAGs and increased the content of GAGs and non-collagenous proteins.