929 resultados para Asymptotic behaviour, Bayesian methods, Mixture models, Overfitting, Posterior concentration
Resumo:
In order to build dynamic models for prediction and management of degraded Mediterranean forest areas was necessary to build MARIOLA model, which is a calculation computer program. This model includes the following subprograms. 1) bioshrub program, which calculates total, green and woody shrubs biomass and it establishes the time differences to calculate the growth. 2) selego program, which builds the flow equations from the experimental data. It is based on advanced procedures of statistical multiple regression. 3) VEGETATION program, which solves the state equations with Euler or Runge-Kutta integration methods. Each one of these subprograms can act as independent or as linked programs.
Resumo:
Cover title.
Resumo:
The founding of new populations by small numbers of colonists has been considered a potentially important mechanism promoting evolutionary change in island populations. Colonizing species, such as members of the avian species complex Zosterops lateralis, have been used to support this idea. A large amount of background information on recent colonization history is available for one Zosterops subspecies, Z. lateralis lateralis, providing the opportunity to reconstruct the population dynamics of its colonization sequence. We used a Bayesian approach to combine historical and demographic information available on Z. l. lateralis with genotypic data from six microsatellite loci, and a rejection algorithm to make simultaneous inferences on the demographic parameters describing the recent colonization history of this subspecies in four southwest Pacific islands. Demographic models assuming mutation–drift equilibrium or a large number of founders were better supported than models assuming founder events for three of four recently colonized island populations. Posterior distributions of demographic parameters supported (i) a large stable effective population size of several thousands individuals with point estimates around 4000–5000; (ii) a founder event of very low intensity with a large effective number of founders around 150–200 individuals for each island in three of four islands, suggesting the colonization of those islands by one flock of large size or several flocks of average size; and (iii) a founder event of higher intensity on Norfolk Island with an effective number of founders around 20 individuals, suggesting colonization by a single flock of moderate size. Our inferences on demographic parameters, especially those on the number of founders, were relatively insensitive to the precise choice of prior distributions for microsatellite mutation processes and demographic parameters, suggesting that our analysis provides a robust description of the recent colonization history of the subspecies.
Resumo:
The precise evaluation of electromagnetic field (EMF) distributions inside biological samples is becoming an increasingly important design requirement for high field MRI systems. In evaluating the induced fields caused by magnetic field gradients and RF transmitter coils, a multilayered dielectric spherical head model is proposed to provide a better understanding of electromagnetic interactions when compared to a traditional homogeneous head phantom. This paper presents Debye potential (DP) and Dyadic Green's function (DGF)-based solutions of the EMFs inside a head-sized, stratified sphere with similar radial conductivity and permittivity profiles as a human head. The DP approach is formulated for the symmetric case in which the source is a circular loop carrying a harmonic-formed current over a wide frequency range. The DGF method is developed for generic cases in which the source may be any kind of RF coil whose current distribution can be evaluated using the method of moments. The calculated EMFs can then be used to deduce MRI imaging parameters. The proposed methods, while not representing the full complexity of a head model, offer advantages in rapid prototyping as the computation times are much lower than a full finite difference time domain calculation using a complex head model. Test examples demonstrate the capability of the proposed models/methods. It is anticipated that this model will be of particular value for high field MRI applications, especially the rapid evaluation of RF resonator (surface and volume coils) and high performance gradient set designs.
Resumo:
In this paper we construct implicit stochastic Runge-Kutta (SRK) methods for solving stochastic differential equations of Stratonovich type. Instead of using the increment of a Wiener process, modified random variables are used. We give convergence conditions of the SRK methods with these modified random variables. In particular, the truncated random variable is used. We present a two-stage stiffly accurate diagonal implicit SRK (SADISRK2) method with strong order 1.0 which has better numerical behaviour than extant methods. We also construct a five-stage diagonal implicit SRK method and a six-stage stiffly accurate diagonal implicit SRK method with strong order 1.5. The mean-square and asymptotic stability properties of the trapezoidal method and the SADISRK2 method are analysed and compared with an explicit method and a semi-implicit method. Numerical results are reported for confirming convergence properties and for comparing the numerical behaviour of these methods.
Resumo:
Since the discovery in the 1970s that dendritic abnormalities in cortical pyramidal neurons are the most consistent pathologic correlate of mental retardation, research has focused on how dendritic alterations are related to reduced intellectual ability. Due in part to obvious ethical problems and in part to the lack of fruitful methods to study neuronal circuitry in the human cortex, there is little data about the microanatomical contribution to mental retardation. The recent identification of the genetic bases of some mental retardation associated alterations, coupled with the technology to create transgenic animal models and the introduction of powerful sophisticated tools in the field of microanatomy, has led to a growth in the studies of the alterations of pyramidal cell morphology in these disorders. Studies of individuals with Down syndrome, the most frequent genetic disorder leading to mental retardation, allow the analysis of the relationships between cognition, genotype and brain microanatomy. In Down syndrome the crucial question is to define the mechanisms by which an excess of normal gene products, in interaction with the environment, directs and constrains neural maturation, and how this abnormal development translates into cognition and behaviour. In the present article we discuss mainly Down syndrome-associated dendritic abnormalities and plasticity and the role of animal models in these studies. We believe that through the further development of such approaches, the study of the microanatomical substrates of mental retardation will contribute significantly to our understanding of the mechanisms underlying human brain disorders associated with mental retardation. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
NPT and NVT Monte Carlo simulations are applied to models for methane and water to predict the PVT behaviour of these fluids over a wide range of temperatures and pressures. The potential models examined in this paper have previously been presented in the literature with their specific parameters optimised to fit phase coexistence data. The exponential-6 potential for methane gives generally good prediction of PVT behaviour over the full range of temperature and pressures studied with the only significant deviation from experimental data seen at high temperatures and pressures. The NSPCE water model shows very poor prediction of PVT behaviour, particularly at dense conditions. To improve this. the charge separation in the NSPCE model is varied with density. Improvements for vapour and liquid phase PVT predictions are achieved with this variation. No improvement was found in the prediction of the oxygen-oxygen radial distribution by varying charge separation under dense phase conditions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this paper we investigate a Bayesian procedure for the estimation of a flexible generalised distribution, notably the MacGillivray adaptation of the g-and-κ distribution. This distribution, described through its inverse cdf or quantile function, generalises the standard normal through extra parameters which together describe skewness and kurtosis. The standard quantile-based methods for estimating the parameters of generalised distributions are often arbitrary and do not rely on computation of the likelihood. MCMC, however, provides a simulation-based alternative for obtaining the maximum likelihood estimates of parameters of these distributions or for deriving posterior estimates of the parameters through a Bayesian framework. In this paper we adopt the latter approach, The proposed methodology is illustrated through an application in which the parameter of interest is slightly skewed.
Resumo:
Many models have been advanced to suggest how different expressions of sociality have evolved and are maintained. However these models ignore the function of groups for the particular species in question. Here we present a new perspective on sociality where the function of the group takes a central role. We argue that sociality may have primarily a reproductive, protective, or foraging function, depending on whether it enhances the reproductive, protective or foraging aspect of the animal's life (sociality may serve a mixture of these functions). Different functions can potentially cause the development of the same social behaviour. By identifying which function influences a particular social behaviour we can determine how that social behaviour will change with changing conditions, and which models are most pertinent. To test our approach we examined spider sociality, which has often been seen as the poor cousin to insect sociality. By using our approach we found that the group characteristics of eusocial insects is largely governed by the reproductive function of their groups, while the group characteristics of social spiders is largely governed by the foraging function of the group. This means that models relevant to insects may not be relevant to spiders. It also explains why eusocial insects have developed a strict caste system while spider societies are more egalitarian. We also used our approach to explain the differences between different types of spider groups. For example, differences in the characteristics of colonial and kleptoparasitic groups can be explained by differences in foraging methods, while differences between colonial and cooperative spiders can be explained by the role of the reproductive function in the formation of cooperative spider groups. Although the interactions within cooperative spider colonies are largely those of a foraging society, demographic traits and colony dynamics are strongly influenced by the reproductive function. We argue that functional explanations help to understand the social structure of spider groups and therefore the evolutionary potential for speciation in social spiders.
Resumo:
The estimated parameters of output distance functions frequently violate the monotonicity, quasi-convexity and convexity constraints implied by economic theory, leading to estimated elasticities and shadow prices that are incorrectly signed, and ultimately to perverse conclusions concerning the effects of input and output changes on productivity growth and relative efficiency levels. We show how a Bayesian approach can be used to impose these constraints on the parameters of a translog output distance function. Implementing the approach involves the use of a Gibbs sampler with data augmentation. A Metropolis-Hastings algorithm is also used within the Gibbs to simulate observations from truncated pdfs. Our methods are developed for the case where panel data is available and technical inefficiency effects are assumed to be time-invariant. Two models-a fixed effects model and a random effects model-are developed and applied to panel data on 17 European railways. We observe significant changes in estimated elasticities and shadow price ratios when regularity restrictions are imposed. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The aim of this report is to describe the use of WinBUGS for two datasets that arise from typical population pharmacokinetic studies. The first dataset relates to gentamicin concentration-time data that arose as part of routine clinical care of 55 neonates. The second dataset incorporated data from 96 patients receiving enoxaparin. Both datasets were originally analyzed by using NONMEM. In the first instance, although NONMEM provided reasonable estimates of the fixed effects parameters it was unable to provide satisfactory estimates of the between-subject variance. In the second instance, the use of NONMEM resulted in the development of a successful model, albeit with limited available information on the between-subject variability of the pharmacokinetic parameters. WinBUGS was used to develop a model for both of these datasets. Model comparison for the enoxaparin dataset was performed by using the posterior distribution of the log-likelihood and a posterior predictive check. The use of WinBUGS supported the same structural models tried in NONMEM. For the gentamicin dataset a one-compartment model with intravenous infusion was developed, and the population parameters including the full between-subject variance-covariance matrix were available. Analysis of the enoxaparin dataset supported a two compartment model as superior to the one-compartment model, based on the posterior predictive check. Again, the full between-subject variance-covariance matrix parameters were available. Fully Bayesian approaches using MCMC methods, via WinBUGS, can offer added value for analysis of population pharmacokinetic data.
Resumo:
Two stochastic production frontier models are formulated within the generalized production function framework popularized by Zellner and Revankar (Rev. Econ. Stud. 36 (1969) 241) and Zellner and Ryu (J. Appl. Econometrics 13 (1998) 101). This framework is convenient for parsimonious modeling of a production function with returns to scale specified as a function of output. Two alternatives for introducing the stochastic inefficiency term and the stochastic error are considered. In the first the errors are added to an equation of the form h(log y, theta) = log f (x, beta) where y denotes output, x is a vector of inputs and (theta, beta) are parameters. In the second the equation h(log y,theta) = log f(x, beta) is solved for log y to yield a solution of the form log y = g[theta, log f(x, beta)] and the errors are added to this equation. The latter alternative is novel, but it is needed to preserve the usual definition of firm efficiency. The two alternative stochastic assumptions are considered in conjunction with two returns to scale functions, making a total of four models that are considered. A Bayesian framework for estimating all four models is described. The techniques are applied to USDA state-level data on agricultural output and four inputs. Posterior distributions for all parameters, for firm efficiencies and for the efficiency rankings of firms are obtained. The sensitivity of the results to the returns to scale specification and to the stochastic specification is examined. (c) 2004 Elsevier B.V. All rights reserved.