930 resultados para Arrays Of Cracks
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The versatility of sensor arrays made from nanostructured Langmuir-Blodgett (LB) and layer-by-layer (LBL) films is demonstrated in two ways. First, different combinations of sensing units are employed to distinguish the basic tastes, viz. sweet, sour, bitter, and salty tastes, produced, respectively, by small concentrations (down to 0.01 g/mol) of sucrose, HCl, quinine, and NaCl solutions. The sensing units are comprised of LB and/or LBL films from semiconducting polymers, a ruthenium complex, and sulfonated lignin. Then, sensor arrays were used to identify wines from different sources, with the high distinguishing ability being demonstrated in principal component analysis (PCA) plots. Particularly important was the fact that the sensing ability does not depend on specific interactions between analytes and the film materials, but a judicious choice of materials is, nevertheless, required for the materials to respond differently to a given sample. It is also shown that the interaction with the analyte may affect the morphology of the nanostructured films, as indicated with scanning electron microscopy. For instance, in wine analysis these changes are not irreversible and the original film morphology is retrieved if the sensing unit is washed with copious amounts of water, thus allowing the sensor unit to be reused.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The world tendency is the increase of the productivity and the production of pieces more and more sophisticated, with high degree of geometric and dimensional tolerances, with good surface finish and low cost. Rectification is responsible for the final finish in the machining process of a material. However, damages generated in this production phase affect all the resources used in the previous processes. Great part of the problems happennig in the rectification process is due to the enormous temperature generated in this activity because of the machining conditions. The dive speed, which is directly related to the productivity, is considered responsible for the damages that occur during rectification, limiting its values to those that do not cause such damages. In this work, through the variation of the dive speed in the process of cylindrical grinding of type ABNT D6 steel, rationalizing the application of two cutting fluids and using a CBN (cubic boron nitrate) abrasive wheel with vitrified blond, the influence of the dive speed on the surface damages of hardened steels was evaluated. The results allowed to say that the dive speed, associated to an efficient cooling and lubrication, didn't provoke thermal damages (including heated zones, cracks and tension stresses) to the material. Residual stresses and the roughness of rectified materials presented a correlation with the machining conditions. The work concluded that it is possible to increase the productivity without provoking damages in the rectified components.
Resumo:
The aim of this work was to investigate the effect of previous treatments at high pressures on the crystallization kinetics of monolithic samples of a Li2O-2SiO(2) (LS2) glass. The glass transition temperature (T-g) and the temperature of the onset of crystallization (T-p) obtained by differential thermal analyses (DTA) were measured for LS2 glass samples submitted to isostatic pressures ranging from 2.5 to 7.7 GPa during 5 min at room temperature. The observed systematic changes in T-g and T-p were probably related to the cracks induced by high pressure inside the monolithic samples and in its surface. Away from the cracks, the nucleation density slightly decreased as a function of pressure but along the cracks, the nucleation density was significantly higher. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A major difficulty to achieve maximum weight savings in the manufacture of composite structural components, is the tendency of these materials have the formation of voids and cracks in the interior and surface components. In aeronautical applications, controlling the volume fraction of fibers, resins and empty the components of composite is very hard. In this work, composites of epoxy matrix RTM6 reinforced with NCF (non crimp fabric carbon) processed by resin transfer molding (RTM) were characterized for porosity (P-ap) and density (rho(ad)). We used a method based on Archimedes' principle (ASTM C830) and the technique of helium pycnometer. The porosity values were compared with those determined by acid digestion (ASTM D3171). The mechanical properties of processed composites was evaluated by testing on the performing flexural and the results were correlated with the porosity value. All techniques tested to determine void content are satisfactory. The differents results can be justified for heterogeneous void distribution on laminate and differences among techniques characteristics. (C) 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of ICM11
Resumo:
Fretting fatigue occurs when the contact surfaces of two components undergo small oscillatory movement while they are subjected to a clamping force. A cyclic external load gives rise to the early initiation of fatigue cracks, thus reducing their service life. In this paper, the fretting fatigue behaviour of commercially pure titanium flat samples (1.5 mm thick) is evaluated. A fretting device composed of a frame, load cell, and two screw-mounted cylindrical fretting pads with convex extremities was built and set to a servo-hydraulic testing machine. The fatigue tests were conducted under load control at a frequency of 10 Hz and stress ratio R = 0.1, with various contact load values applied to the fretting pads. Additional tests under inert environment allowed assessing the role of oxidation on the wear debris formation. The fracture surfaces and fretting scars were analysed via scanning electron microscopy in order to evaluate the surface damage evolution and its effect on the fatigue crack features. The effect of the fretting condition on the S-N curve of the material in the range of 10(4)-10(6) cycles is described. Fatigue crack growth calculations allowed estimating the crack initiation and propagation lives under fretting conditions. The effect of the fretting condition in fatigue life is stronger for the lower values of cyclic stress and does not seem to depend on the contact loading value.
Resumo:
This paper will present a failure analysis of a chain component, manufactured with AISI 1045 steel and used for sugarcane transport. During the fabrication process, this component is submitted to induction hardening, just on one surface, before the galvanizing process. The occurrence of surface cracks, during storage, disables the usage of these components. Chemical and metallographic analyses, tensile, fracture toughness, and hardness tests, and fractography were conducted in order to determine the causes of failure. The steel chemical composition was in accordance with AISI 1045. The metallographic analyses and fractography did not exhibit the presence of zinc into the cracks; this is an indication that the cracks occurred after the galvanizing process. Tensile and fracture toughness test results are as expected. The crack surface and the fracture toughness specimen surfaces showed two different fracture micromechanisms: dimples and intergranular. The delayed fracture associated with the predominance of intergranular fracture micromechanism at the induction hardened layer and the high hardness level is a clear indication of the hydrogen embrittlement. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The mature dentinoenamel junction (DEJ) is viewed by some investigators and the current authors, not as a fossilized, sharp transition between enamel and dentin, but as a relatively broad structural transition zone including the mantle dentin and the inner aprismatic enamel. In this study, the DEJ structure in bovine incisors was studied with synchrotron microComputed Tomography (microCT) using small cubes cut parallel to the tooth surface. The reconstructions revealed a zone of highly variable punctate contrast between bulk dentin and enamel; the mean linear attenuation coefficients and their standard deviations demonstrated that this zone averaged less mineral than dentin or enamel but had more highly variable structure than either. The region with the punctuate contrast is, therefore, the mantle dentin. The thickness of the mantle dentin seen in a typical data set was about 30 mu m, and the mantle dentin-enamel interface deviated +/- 15 mu m from the average plane over a distance of 520 mu m. In the highest resolution data (similar to 1.5 mu m isotropic voxels, volume elements), tubules in the dentin could be discerned in the vicinity of the DEJ. Contrast sensitivity was high enough to detect differences in mineral content between near-surface and near-DEJ volumes of the enamel. Reconstructions before and after two cubes were compressed to failure revealed cracks formed only in the enamel and did not propagate across the mantle dentin, regardless of whether loading was parallel to or perpendicular to the DEJ. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)