997 resultados para Arquitetura de hardware


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed SPARTS, a simulator of a generic embedded real-time device. It is designed to be extensible to accommodate different task properties, scheduling algorithms and/or hardware models for the wide variety of applications. SPARTS was developed to help the community investigate the behaviour of the real-time embedded systems and to quantify the associated constraints/overheads.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most research work on WSNs has focused on protocols or on specific applications. There is a clear lack of easy/ready-to-use WSN technologies and tools for planning, implementing, testing and commissioning WSN systems in an integrated fashion. While there exists a plethora of papers about network planning and deployment methodologies, to the best of our knowledge none of them helps the designer to match coverage requirements with network performance evaluation. In this paper we aim at filling this gap by presenting an unified toolset, i.e., a framework able to provide a global picture of the system, from the network deployment planning to system test and validation. This toolset has been designed to back up the EMMON WSN system architecture for large-scale, dense, real-time embedded monitoring. It includes network deployment planning, worst-case analysis and dimensioning, protocol simulation and automatic remote programming and hardware testing tools. This toolset has been paramount to validate the system architecture through DEMMON1, the first EMMON demonstrator, i.e., a 300+ node test-bed, which is, to the best of our knowledge, the largest single-site WSN test-bed in Europe to date.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We focus on large-scale and dense deeply embedded systems where, due to the large amount of information generated by all nodes, even simple aggregate computations such as the minimum value (MIN) of the sensor readings become notoriously expensive to obtain. Recent research has exploited a dominance-based medium access control(MAC) protocol, the CAN bus, for computing aggregated quantities in wired systems. For example, MIN can be computed efficiently and an interpolation function which approximates sensor data in an area can be obtained efficiently as well. Dominance-based MAC protocols have recently been proposed for wireless channels and these protocols can be expected to be used for achieving highly scalable aggregate computations in wireless systems. But no experimental demonstration is currently available in the research literature. In this paper, we demonstrate that highly scalable aggregate computations in wireless networks are possible. We do so by (i) building a new wireless hardware platform with appropriate characteristics for making dominance-based MAC protocols efficient, (ii) implementing dominance-based MAC protocols on this platform, (iii) implementing distributed algorithms for aggregate computations (MIN, MAX, Interpolation) using the new implementation of the dominance-based MAC protocol and (iv) performing experiments to prove that such highly scalable aggregate computations in wireless networks are possible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since its official public release, Android has captured the interest from companies, developers and the general audience. From that time up to now, this software platform has been constantly improved either in terms of features or supported hardware and, at the same time, extended to new types of devices different from the originally intended mobile ones. However, there is a feature that has not been explored yet - its real-time capabilities. This paper intends to explore this gap and provide a basis for discussion on the suitability of Android in order to be used in Open Real-Time environments. By analysing the software platform, with the main focus on the virtual machine and its underlying operating system environments, we are able to point out its current limitations and, therefore, provide a hint on different perspectives of directions in order to make Android suitable for these environments. It is our position that Android may provide a suitable architecture for real-time embedded systems, but the real-time community should address its limitations in a joint effort at all of the platform layers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphics processor units (GPUs) today can be used for computations that go beyond graphics and such use can attain a performance that is orders of magnitude greater than a normal processor. The software executing on a graphics processor is composed of a set of (often thousands of) threads which operate on different parts of the data and thereby jointly compute a result which is delivered to another thread executing on the main processor. Hence the response time of a thread executing on the main processor is dependent on the finishing time of the execution of threads executing on the GPU. Therefore, we present a simple method for calculating an upper bound on the finishing time of threads executing on a GPU, in particular NVIDIA Fermi. Developing such a method is nontrivial because threads executing on a GPU share hardware resources at very fine granularity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Temporal isolation is an increasingly relevant con- cern in particular for ARINC-351 and virtualisation- based systems. Traditional approaches like the rate- based scheduling framework RBED do not take into account the impact of preemptions in terms of loss of working set in the acceleration hardware (e.g. caches). While some improvements have been suggested in the literature, they are overly heavy in the presence of small high-priority tasks such as interrupt service routines. Within this paper we propose an approach enabling adaptive assessment of this preemption delay in a tem- poral isolation framework with special consideration of capabilities and limitations of the approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Link quality estimation is a fundamental building block for the design of several different mechanisms and protocols in wireless sensor networks (WSN). A thorough experimental evaluation of link quality estimators (LQEs) is thus mandatory. Several WSN experimental testbeds have been designed ([1–4]) but only [3] and [2] targeted link quality measurements. However, these were exploited for analyzing low-power links characteristics rather than the performance of LQEs. Despite its importance, the experimental performance evaluation of LQEs remains an open problem, mainly due to the difficulty to provide a quantitative evaluation of their accuracy. This motivated us to build a benchmarking testbed for LQE - RadiaLE, which we present here as a demo. It includes (i.) hardware components that represent the WSN under test and (ii.) a software tool for the set up and control of the experiments and also for analyzing the collected data, allowing for LQEs evaluation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The IEEE 802.15.4/Zigbee protocols are a promising technology for Wireless Sensor Networks (WSNs). This paper shares our experience on the implementation and use of these protocols and related technologies in WSNs. We present problems and challenges we have been facing in implementing an IEEE 802.15.4/ZigBee stack for TinyOS in a two-folded perspective: IEEE 802.15.4/ZigBee protocol standards limitations (ambiguities and open issues) and technological limitations (hardware and software). Concerning the former, we address challenges for building scalable and synchronized multi-cluster ZigBee networks, providing a trade-off between timeliness and energy-efficiency. On the latter issue, we highlight implementation problems in terms of hardware, timer handling and operating system limitations. We also report on our experience from experimental test-beds, namely on physical layer aspects such as coexistence problems between IEEE 802.15.4 and 802.11 radio channels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Within the European project R-Fieldbus (http://www.hurray.isep.ipp.pt/activities/rfieldbus/), an industrial manufacturing field trial was developed. This field trial was conceived as a demonstration test bed for the technologies developed during the project. Because the R-Fieldbus field trial included prototype hardware devices, the purpose of this equipment changed and since the conclusion of the project, several new technologies also emerged, therefore an update of the field trial was required. This document describes an update of the manufacturing field trial. The purpose of this update, the changes and improvements introduced are described in the document. Additionally, this document also provides a reliable source of documentation for the equipment, configuration and software components of the manufacturing field trial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Estruturas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do Grau de Mestre em Engenharia Informática.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural health monitoring has long been identified as a prominent application of Wireless Sensor Networks (WSNs), as traditional wired-based solutions present some inherent limitations such as installation/maintenance cost, scalability and visual impact. Nevertheless, there is a lack of ready-to-use and off-the-shelf WSN technologies that are able to fulfill some most demanding requirements of these applications, which can span from critical physical infrastructures (e.g. bridges, tunnels, mines, energy grid) to historical buildings or even industrial machinery and vehicles. Low-power and low-cost yet extremely sensitive and accurate accelerometer and signal acquisition hardware and stringent time synchronization of all sensors data are just examples of the requirements imposed by most of these applications. This paper presents a prototype system for health monitoring of civil engineering structures that has been jointly conceived by a team of civil, and electrical and computer engineers. It merges the benefits of standard and off-the-shelf (COTS) hardware and communication technologies with a minimum set of custom-designed signal acquisition hardware that is mandatory to fulfill all application requirements.