885 resultados para Aqueous
Resumo:
New constraints on isotope fractionation factors in inorganic aqueous sulfur systems based on theoretical and experimental techniques relevant to studies of the sulfur cycle in modern environments and the geologic rock record are presented in this dissertation. These include theoretical estimations of equilibrium isotope fractionation factors utilizing quantum mechanical software and a water cluster model approach for aqueous sulfur compounds that span the entire range of oxidation state for sulfur. These theoretical calculations generally reproduce the available experimental determinations from the literature and provide new constraints where no others are available. These theoretical calculations illustrate in detail the relationship between sulfur bonding environment and the mass dependence associated with equilibrium isotope exchange reactions involving all four isotopes of sulfur. I additionally highlight the effect of isomers of protonated compounds (compounds with the same chemical formula but different structure, where protons are bound to either sulfur or oxygen atoms) on isotope partitioning in the sulfite (S4+) and sulfoxylate (S2+) systems, both of which are key intermediates in oxidation-reduction processes in the sulfur cycle. I demonstrate that isomers containing the highest degree of coordination around sulfur (where protonation occurs on the sulfur atom) have a strong influence on isotopic fractionation factors, and argue that isomerization phenomenon should be considered in models of the sulfur cycle. Additionally, experimental results of the reaction rates and isotope fractionations associated with the chemical oxidation of aqueous sulfide are presented. Sulfide oxidation is a major process in the global sulfur cycle due largely to the sulfide-producing activity of anaerobic microorganisms in organic-rich marine sediments. These experiments reveal relationships between isotope fractionations and reaction rate as a function of both temperature and trace metal (ferrous iron) catalysis that I interpret in the context of the complex mechanism of sulfide oxidation. I also demonstrate that sulfide oxidation is a process associated with a mass dependence that can be described as not conforming to the mass dependence typically associated with equilibrium isotope exchange. This observation has implications for the inclusion of oxidative processes in environmental- and global-scale models of the sulfur cycle based on the mass balance of all four isotopes of sulfur. The contents of this dissertation provide key reference information on isotopic fractionation factors in aqueous sulfur systems that will have far-reaching applicability to studies of the sulfur cycle in a wide variety of natural settings.
Resumo:
Norflurazon (4-chloro-5-(methylamino)-2-[3- trifluoromethyl)phenyl]pyridazin-3(2H)-one; C12H9ClF3N3O) is an excellent weed controlling agent being practiced in the agricultural lands. The excessive addition or the undissolved Norflurazon (maximum solubility 28 mg/L at 25 C) enters into the aquatic environment and causes the adverse effects associated with its high concentration. To avoid the perilous effects, visible light assisted photocatalysis set-up coupled with the 42 kHz ultrasound producing bath type sonicator is used to completely mineralize the Norflurazon. TiO2, ZnO and gold loaded zinc oxide nanocatalysts were utilized to study the mineralization of Norflurazon. AueZnO shows the greater efficiency for the sonophotocatalytic removal of Norflurazon among the various nanocatalysts employed to study the mineralization. The order of Norflurazon mineralization was sonophotocatalysis > sonocatalysis > photocatalysis. The additive effect was achieved for the sonophotocatalytic degradation. The high performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometric (LCMS) analyses were employed to identify the various intermediates produced during the mineralization. The identification of four pseudo molecular ions and various intermediates using the LCMS analysis evidently suggests the sonophotocatalytic degradation was preceded in various decay pathways. A suitable mechanism has been proposed for the sonophotocatalytic mineralization of Norflurazon
Resumo:
Purpose: To evaluate the anti-vibrio potentials of acetone and aqueous leaf extracts of Ocimum gratissimum and determine its relevance in the treatment of vibrios infection. Methods: The agar-well diffusion method was used for screening the extracts for their anti-vibrio activity. Broth micro-dilution assay was used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the extracts. Time-kill assay was used to assess bactericidal and/or bacteriostatic activity. Results: The acetone extract showed activity against 47.5 % (19/40) of the test bacteria, while the aqueous extract had activity against 30 % (12/40). MIC and MBC values range for the acetone extract were 0.625 – 5.0 mg/mL and 2.5 – 10 mg/mL respectively. The range of MIC exhibited by the antibiotic (gentamicin) against the vibrios is 0.002 mg/mL and >0.256 mg/mL. Significant reduction in the bacterial density was at 2 × MIC after a 4 h interaction period, while bacterial density after 6 and 8 h interactions with extract was highly bactericidal. Growth inhibition and efficacy of the crude acetone extract were observed to be both concentration- and time-dependent. Conclusion: The bacteriostatic and bactericidal activities observed for Ocimum gratissimum leaf suggest that the plant is a potential source of bioactive components that may be effective in the treatment of vibrios infections.
Resumo:
An integrated analysis of naproxen adsorption on bone char in batch and packed-bed column conditions has been performed. Kinetic, thermodynamic and breakthrough parameters have been calculated using adsorption models and artificial neural networks. Results show that naproxen removal using bone char in batch conditions is a feasible and effective process, which could involve electrostatic and non-electrostatic interactions depending mainly on pH conditions. However, the application of packed-bed column for naproxen adsorption on bone char is not effective for the treatment of diluted solutions due to the low degree of adsorbent utilization (below 4%) at tested operating conditions. The proposed mechanism for naproxen removal using bone char could include a complexation process via phosphate and naproxen, hydrogen bonding and the possibility of hydrophobic interactions via π–π electron. This study highlights the relevance of performing an integrated analysis of adsorbent effectiveness in batch and dynamic conditions to establish the best process configuration for the removal of emerging water pollutants such as pharmaceuticals.
Resumo:
The photochemistry of pesticides triadimefon and triadimenol was studied in aqueous solution and in methanol/water mixtures, in controlled and natural conditions. The photodegradation kinetics and product distribution are strongly dependent on the solvent and on the irradiation wavelength. The degradation rates are faster at 254 nm than at 313 nm. The kinetics is faster in water than methanol. Direct photoreaction is an important dissipation pathway of triadimefon in natural water systems while triadimenol is stable in these conditions. 1,2,4-Triazole and 4-chlorophenol are two of the major photodegradation products. The formation of the 4-chlorophenoxyl radical was detected for both pesticides in methanol and methanol/water mixtures. In methanol/water mixtures the reaction of both pesticides also occurs with 4-chlorophenolate formation, which increases with the water content. The photochemical studies of pesticides and other pollutants should be made in conditions as similar as possible to those observed in environmental systems. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
136 p.
Resumo:
Background: Asparagus is a plant with high nutritional, pharmaceutical, and industrial values. Objective: The present study aimed to evaluate the effect of aqueous extract of asparagus roots on the hypothalamic-pituitary-gonadal axis hormones and oogenesis in female rats. Materials and Methods: In this experimental study, 40 adult female Wistar rats were divided into five groups, which consist 8 rats. Groups included control, sham and three experimental groups receiving different doses (100, 200, 400 mg/kg/bw) of aqueous extract of asparagus roots. All dosages were administered orally for 28 days. Blood samples were taken from rats to evaluate serum levels of Gonadotropin releasing hormone (GnRH), follicular stimulating hormone (FSH), Luteinal hormone (LH), estrogen, and progesterone hormones. The ovaries were removed, weighted, sectioned, and studied by light microscope. Results: Dose-dependent aqueous extract of asparagus roots significantly increased serum levels of GnRH, FSH, LH, estrogen, and progestin hormones compared to control and sham groups. Increase in number of ovarian follicles and corpus luteum in groups treated with asparagus root extract was also observed (p<0.05). Conclusion: Asparagus roots extract stimulates secretion of hypothalamic- pituitary- gonadal axis hormones. This also positively affects oogenesis in female rats.
Resumo:
A family of bulk and SBA-15 supported peroxo niobic acid sols were prepared by peptisation of niobic acid precipitates with H2O2 as heterogeneous catalysts for aqueous phase glucose and fructose conversion to 5-hydroxymethylfurfural (5-HMF). Niobic acid nanoparticles possess a high density of Brønsted and Lewis acid sites, conferring good activity towards glucose and fructose conversion, albeit with modest 5-HMF yields under mild reaction conditions (100 °C). Thermally-induced niobia crystallisation suppresses solid acidity and activity. Nanoparticulate niobic acid dispersed over SBA-15 exhibits pure Brønsted acidity and an enhanced Turnover Frequency for fructose dehydration.
Resumo:
The effect of microwave pre-treatment on the levels of total phenolic compounds, flavonoids, proanthocyanidins and individual major compounds as well as the total antioxidant activity of the dried lemon pomace was investigated. The results showed that microwave pre-treatment significantly affected all the examined parameters. The total phenolic content, total flavonoids, proanthocyanidins, as well as the total antioxidant activity significantly increased as the microwave radiation time and power increased (e.g., 2.5 folds for phenolics, 1.4 folds for flavonoids and 5.5 folds for proanthocyanidins), however irradiation more than 480 W for 5 min resulted in the decrease of these parameters. These findings indicate that microwave irradiation time and power may enhance higher levels of the phenolic compounds as well as the antioxidant capacity of the dried lemon pomace powder. However, higher and longer irradiation may lead to a degradation of phenolic compounds and lower the antioxidant capacity of the dried lemon pomace.
Resumo:
The use of biological processes with the aim of the recovery of gold from low-concentration solutions derived from leaching of secondary sources is gaining increasing importance owing to the scarcity of the primary resources and the economic and environmental advantages usually presented by these methods. Thus, the addition in batch and continuous processes of different solutions containing biogenic sulphide, which was generated by the activity of sulphate-reducing bacteria (SRB), to gold(III) solutions was investigated for that purpose. In the batch experiments, AuS nanoparticles with sizes of between 6 and 14 nm were obtained (corresponding to 100% removal of Au(III) from solution) if the biogenic sulphide was generated in a typical nutrient medium for SRB, whereas Au(0) nanoparticles with sizes of below 8 nm were obtained (corresponding to 62% removal of Au(III)) if effluent from a SRB bioremediation process for treating acid mine drainage (AMD) was used instead. These results stimulated the development of a continuous process of addition, in which two sulphide-rich effluents, which resulted from a SRB bioremediation process for treating two types of AMD (from a uranium mine and a polysulphide mine), were tested. In both cases, Au(0) nanoparticles with sizes of between 6 and 15 nm were mainly obtained, and the percentage removal of Au(III) from solution ranged from 76% to 100%. The processes described allow the simultaneous treatment of AMD and recovery of metallic gold nanoparticles, which are a product with a wide range of applications (e.g., in medicine, optical devices and catalysis) and high economic value. The synthesis process described in this work can be considered as novel, because it is the first time, to our knowledge, that the use of effluent from a SRB bioremediation process has been reported for the recovery of gold(III) as gold(0) nanoparticles.