956 resultados para Applied identity-based encryption


Relevância:

30.00% 30.00%

Publicador:

Resumo:

When the orthogonal space-time block code (STBC), or the Alamouti code, is applied on a multiple-input multiple-output (MIMO) communications system, the optimum reception can be achieved by a simple signal decoupling at the receiver. The performance, however, deteriorates significantly in presence of co-channel interference (CCI) from other users. In this paper, such CCI problem is overcome by applying the independent component analysis (ICA), a blind source separation algorithm. This is based on the fact that, if the transmission data from every transmit antenna are mutually independent, they can be effectively separated at the receiver with the principle of the blind source separation. Then equivalently, the CCI is suppressed. Although they are not required by the ICA algorithm itself, a small number of training data are necessary to eliminate the phase and order ambiguities at the ICA outputs, leading to a semi-blind approach. Numerical simulation is also shown to verify the proposed ICA approach in the multiuser MIMO system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses the RFID implants for identification via a sensor network. Brain-computer implants linked in to a wireless network. Biometric identification via body sensors is also discussed. The use of a network as a means for remote and distance monitoring of humans opens up a range of potential uses. Where implanted identification is concerned this immediately offers high security access to specific areas by means of only an RFID device. If a neural implant is employed then clearly the information exchanged with a network can take on a much richer form, allowing for identification and response to an individual's needs based on the signals apparent on their nervous system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel intelligent multiple-controller framework incorporating a fuzzy-logic-based switching and tuning supervisor along with a generalised learning model (GLM) for an autonomous cruise control application. The proposed methodology combines the benefits of a conventional proportional-integral-derivative (PID) controller, and a PID structure-based (simultaneous) zero and pole placement controller. The switching decision between the two nonlinear fixed structure controllers is made on the basis of the required performance measure using a fuzzy-logic-based supervisor, operating at the highest level of the system. The supervisor is also employed to adaptively tune the parameters of the multiple controllers in order to achieve the desired closed-loop system performance. The intelligent multiple-controller framework is applied to the autonomous cruise control problem in order to maintain a desired vehicle speed by controlling the throttle plate angle in an electronic throttle control (ETC) system. Sample simulation results using a validated nonlinear vehicle model are used to demonstrate the effectiveness of the multiple-controller with respect to adaptively tracking the desired vehicle speed changes and achieving the desired speed of response, whilst penalising excessive control action. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The identification and visualization of clusters formed by motor unit action potentials (MUAPs) is an essential step in investigations seeking to explain the control of the neuromuscular system. This work introduces the generative topographic mapping (GTM), a novel machine learning tool, for clustering of MUAPs, and also it extends the GTM technique to provide a way of visualizing MUAPs. The performance of GTM was compared to that of three other clustering methods: the self-organizing map (SOM), a Gaussian mixture model (GMM), and the neural-gas network (NGN). The results, based on the study of experimental MUAPs, showed that the rate of success of both GTM and SOM outperformed that of GMM and NGN, and also that GTM may in practice be used as a principled alternative to the SOM in the study of MUAPs. A visualization tool, which we called GTM grid, was devised for visualization of MUAPs lying in a high-dimensional space. The visualization provided by the GTM grid was compared to that obtained from principal component analysis (PCA). (c) 2005 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces a procedure for filtering electromyographic (EMG) signals. Its key element is the Empirical Mode Decomposition, a novel digital signal processing technique that can decompose my time-series into a set of functions designated as intrinsic mode functions. The procedure for EMG signal filtering is compared to a related approach based on the wavelet transform. Results obtained from the analysis of synthetic and experimental EMG signals show that Our method can be Successfully and easily applied in practice to attenuation of background activity in EMG signals. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: This paper presents a detailed study of fractal-based methods for texture characterization of mammographic mass lesions and architectural distortion. The purpose of this study is to explore the use of fractal and lacunarity analysis for the characterization and classification of both tumor lesions and normal breast parenchyma in mammography. Materials and methods: We conducted comparative evaluations of five popular fractal dimension estimation methods for the characterization of the texture of mass lesions and architectural distortion. We applied the concept of lacunarity to the description of the spatial distribution of the pixel intensities in mammographic images. These methods were tested with a set of 57 breast masses and 60 normal breast parenchyma (dataset1), and with another set of 19 architectural distortions and 41 normal breast parenchyma (dataset2). Support vector machines (SVM) were used as a pattern classification method for tumor classification. Results: Experimental results showed that the fractal dimension of region of interest (ROIs) depicting mass lesions and architectural distortion was statistically significantly lower than that of normal breast parenchyma for all five methods. Receiver operating characteristic (ROC) analysis showed that fractional Brownian motion (FBM) method generated the highest area under ROC curve (A z = 0.839 for dataset1, 0.828 for dataset2, respectively) among five methods for both datasets. Lacunarity analysis showed that the ROIs depicting mass lesions and architectural distortion had higher lacunarities than those of ROIs depicting normal breast parenchyma. The combination of FBM fractal dimension and lacunarity yielded the highest A z value (0.903 and 0.875, respectively) than those based on single feature alone for both given datasets. The application of the SVM improved the performance of the fractal-based features in differentiating tumor lesions from normal breast parenchyma by generating higher A z value. Conclusion: FBM texture model is the most appropriate model for characterizing mammographic images due to self-affinity assumption of the method being a better approximation. Lacunarity is an effective counterpart measure of the fractal dimension in texture feature extraction in mammographic images. The classification results obtained in this work suggest that the SVM is an effective method with great potential for classification in mammographic image analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many kernel classifier construction algorithms adopt classification accuracy as performance metrics in model evaluation. Moreover, equal weighting is often applied to each data sample in parameter estimation. These modeling practices often become problematic if the data sets are imbalanced. We present a kernel classifier construction algorithm using orthogonal forward selection (OFS) in order to optimize the model generalization for imbalanced two-class data sets. This kernel classifier identification algorithm is based on a new regularized orthogonal weighted least squares (ROWLS) estimator and the model selection criterion of maximal leave-one-out area under curve (LOO-AUC) of the receiver operating characteristics (ROCs). It is shown that, owing to the orthogonalization procedure, the LOO-AUC can be calculated via an analytic formula based on the new regularized orthogonal weighted least squares parameter estimator, without actually splitting the estimation data set. The proposed algorithm can achieve minimal computational expense via a set of forward recursive updating formula in searching model terms with maximal incremental LOO-AUC value. Numerical examples are used to demonstrate the efficacy of the algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing legislation has steadily been introduced throughout the world to restrict the use of heavy metals, particularly cadmium (Cd) and lead (Pb) in high temperature pigments, ceramics, and optoelectronic material applications. Removal of cadmium from thin-film optical and semiconductor device applications has been hampered by the absence of viable alternatives that exhibit similar properties with stability and durability. We describe a range of tin-based compounds that have been deposited and characterized in terms of their optical and mechanical properties and compare them with existing cadmium-based films that currently find widespread use in the optoelectronic and semiconductor industries. (c) 2008 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Comparison-based diagnosis is an effective approach to system-level fault diagnosis. Under the Maeng-Malek comparison model (NM* model), Sengupta and Dahbura proposed an O(N-5) diagnosis algorithm for general diagnosable systems with N nodes. Thanks to lower diameter and better graph embedding capability as compared with a hypercube of the same size, the crossed cube has been a promising candidate for interconnection networks. In this paper, we propose a fault diagnosis algorithm tailored for crossed cube connected multicomputer systems under the MM* model. By introducing appropriate data structures, this algorithm runs in O(Nlog(2)(2) N) time, which is linear in the size of the input. As a result, this algorithm is significantly superior to the Sengupta-Dahbura's algorithm when applied to crossed cube systems. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the design, implementation and testing of an intelligent knowledge-based supervisory control (IKBSC) system for a hot rolling mill process. A novel architecture is used to integrate an expert system with an existing supervisory control system and a new optimization methodology for scheduling the soaking pits in which the material is heated prior to rolling. The resulting IKBSC system was applied to an aluminium hot rolling mill process to improve the shape quality of low-gauge plate and to optimise the use of the soaking pits to reduce energy consumption. The results from the trials demonstrate the advantages to be gained from the IKBSC system that integrates knowledge contained within data, plant and human resources with existing model-based systems. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to display and inspect powder diffraction data quickly and efficiently is a central part of the data analysis process. Whilst many computer programs are capable of displaying powder data, their focus is typically on advanced operations such as structure solution or Rietveld refinement. This article describes a lightweight software package, Jpowder, whose focus is fast and convenient visualization and comparison of powder data sets in a variety of formats from computers with network access. Jpowder is written in Java and uses its associated Web Start technology to allow ‘single-click deployment’ from a web page, http://www.jpowder.org. Jpowder is open source, free and available for use by anyone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of four operational weather forecast models [ECMWF, Action de Recherche Petite Echelle Grande Echelle model (ARPEGE), Regional Atmospheric Climate Model (RACMO), and Met Office] to generate a cloud at the right location and time (the cloud frequency of occurrence) is assessed in the present paper using a two-year time series of observations collected by profiling ground-based active remote sensors (cloud radar and lidar) located at three different sites in western Europe (Cabauw. Netherlands; Chilbolton, United Kingdom; and Palaiseau, France). Particular attention is given to potential biases that may arise from instrumentation differences (especially sensitivity) from one site to another and intermittent sampling. In a second step the statistical properties of the cloud variables involved in most advanced cloud schemes of numerical weather forecast models (ice water content and cloud fraction) are characterized and compared with their counterparts in the models. The two years of observations are first considered as a whole in order to evaluate the accuracy of the statistical representation of the cloud variables in each model. It is shown that all models tend to produce too many high-level clouds, with too-high cloud fraction and ice water content. The midlevel and low-level cloud occurrence is also generally overestimated, with too-low cloud fraction but a correct ice water content. The dataset is then divided into seasons to evaluate the potential of the models to generate different cloud situations in response to different large-scale forcings. Strong variations in cloud occurrence are found in the observations from one season to the same season the following year as well as in the seasonal cycle. Overall, the model biases observed using the whole dataset are still found at seasonal scale, but the models generally manage to well reproduce the observed seasonal variations in cloud occurrence. Overall, models do not generate the same cloud fraction distributions and these distributions do not agree with the observations. Another general conclusion is that the use of continuous ground-based radar and lidar observations is definitely a powerful tool for evaluating model cloud schemes and for a responsive assessment of the benefit achieved by changing or tuning a model cloud

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern methods of analysis applied to cemeteries have often been used in our pages to suggest generalities about mobility and diet. But these same techniques applied to a single individual, together with the grave goods and burial rite, can open a special kind of personal window on the past. Here, the authors of a multidisciplinary project use a combination of scientific techniques to illuminate Roman York, and later Roman history in general, with their image of a glamorous mixed-race woman, in touch with Africa, Christianity, Rome and Yorkshire.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IR, UV-vis, and EPR spectroelectrochemistry at variable temperatures and in different solvents were applied to investigate in situ the formation of electroactive molecular chains with a nonbridged Os-Os backbone, in particular, the polymer [Os-0(bpy)(CO)(2)](n), (bpy = 2,2'-bipyridine), from a mononuclear Os(II) carbonyl precursor, [Os-II(bpy)(CO)(2)Cl-2]. The one-electron-reduced form, [Os-II(bpy(.-))(CO)(2)Cl-2](-), has been characterized spectroscopically at low temperatures. This radical anion is the key intermediate in the electrochemical propagation process responsible for the metal-metal bond formation. Unambiguous spectroscopic evidence has been gained also for the formation of [{Os-0(bpy(.-))(CO)(2)}(-)](n), the electron-rich electrocatalyst of CO2 reduction. The polymer species are fairly well soluble in butyronitrile, which is important for their potential utilization in nanoscience, for example, as conducting molecular wires. We have also shown that complete solubility is accomplished for the monocarbonyl-acetonitrile derivative of the polymer, [Os-0(bpy)(CO)(MeCN)(2)Cl](n).