988 resultados para Antibody-mediated rejection
Resumo:
The granule/perforin exocytosis model of CTL mediated cytolysis proposes that CTL, upon recognition of the specific targets, release the cytolytic, pore-forming protein perforin into the intercellular space which then mediates the cytotoxic effect. However, direct evidence for the involvement of perforin is still lacking, and indeed, recent results even seem incompatible with the model. To determine directly the role of perforin in CTL cytotoxicity, perforin antisense oligonucleotides were exogenously added during the stimulation of mouse spleen derived T cells and human peripheral blood lymphocytes (PBL), respectively. Perforin protein expression in lymphocytes was reduced by up to 65%, and cytotoxicity of stimulated T cells by as much as 69% (5.7-fold). These results provide the first experimental evidence for a crucial role of perforin in lymphocyte mediated cytotoxicity.
Resumo:
Superantigens are defined by their ability to stimulate a large fraction of T cells via interaction with the T cell receptor (TCR) V beta domain. Endogenous superantigens, classically termed minor lymphocyte-stimulating (Mls) antigens, were recently identified as products of open reading frames (ORF) in integrated proviral copies of mouse mammary tumor virus (MMTV). We have described an infectious MMTV homologue of the classical endogenous superantigen Mls-1a (Mtv-7). The ORF molecules of both the endogenous Mtv-7 and the infectious MMTV(SW) interact with T cells expressing the TCR V beta 6, 7, 8.1, and 9 domains. Furthermore, the COOH termini of their ORF molecules, thought to confer TCR specificity, are very similar. Since successful transport of MMTV from the site of infection in the gut to the mammary gland depends on a functional immune system, we were interested in determining the early events after and requirements for MMTV infection. We show that MMTV(SW) infection induces a massive response of V beta 6+ CDC4+ T cells, which interact with the viral ORF. Concomitantly, we observed a B cell response and differentiation that depends on both the presence and stimulation of the superantigen-reactive T cells. Furthermore, we show that B cells are the main target of the initial MMTV infection as judged by the presence of the reverse-transcribed viral genome and ORF transcripts. Thus, we suggest that MMTV infection of B cells leads to ORF-mediated B-T cell interaction, which maintains and possibly amplifies viral infection.
Resumo:
We report 24 unrelated individuals with deletions and 17 additional cases with duplications at 10q11.21q21.1 identified by chromosomal microarray analysis. The rearrangements range in size from 0.3 to 12 Mb. Nineteen of the deletions and eight duplications are flanked by large, directly oriented segmental duplications of >98% sequence identity, suggesting that nonallelic homologous recombination (NAHR) caused these genomic rearrangements. Nine individuals with deletions and five with duplications have additional copy number changes. Detailed clinical evaluation of 20 patients with deletions revealed variable clinical features, with developmental delay (DD) and/or intellectual disability (ID) as the only features common to a majority of individuals. We suggest that some of the other features present in more than one patient with deletion, including hypotonia, sleep apnea, chronic constipation, gastroesophageal and vesicoureteral refluxes, epilepsy, ataxia, dysphagia, nystagmus, and ptosis may result from deletion of the CHAT gene, encoding choline acetyltransferase, and the SLC18A3 gene, mapping in the first intron of CHAT and encoding vesicular acetylcholine transporter. The phenotypic diversity and presence of the deletion in apparently normal carrier parents suggest that subjects carrying 10q11.21q11.23 deletions may exhibit variable phenotypic expressivity and incomplete penetrance influenced by additional genetic and nongenetic modifiers.
Resumo:
A host genetic variant (-35C/T) correlates with increased human leukocyte antigen C (HLA-C) expression and improved control of HIV-1. HLA-C-mediated immunity may be particularly protective because HIV-1 is unable to remove HLA-C from the cell surface, whereas it can avoid HLA-A- and HLA-B-mediated immunity by Nef-mediated down-modulation. However, some individuals with the protective -35CC genotype exhibit high viral loads. Here, we investigated whether the ability of HIV-1 to replicate efficiently in the "protective" high-HLA-C-expression host environment correlates with specific functional properties of Nef. We found that high set point viral loads (sVLs) were not associated with the emergence of Nef variants that had acquired the ability to down-modulate HLA-C or were more effective in removing HLA-A and HLA-B from the cell surface. However, in individuals with the protective -35CC genotype we found a significant association between sVLs and the efficiency of Nef-mediated enhancement of virion infectivity and modulation of CD4, CD28, and the major histocompatibility complex class II (MHC-II)-associated invariant chain (Ii), while this was not observed in subjects with the -35TT genotype. Since the latter Nef functions all influence the stimulation of CD4(+) T helper cells by antigen-presenting cells, they may cooperate to affect both the activation status of infected T cells and the generation of an antiviral cytotoxic T-lymphocyte (CTL) response. In comparison, different levels of viremia in individuals with the common -35TT genotype were not associated with differences in Nef function but with differences in HLA-C mRNA expression levels. Thus, while high HLA-C expression may generally facilitate control of HIV-1, Nef may counteract HLA-C-mediated immune control in some individuals indirectly, by manipulating T-cell function and MHC-II antigen presentation.
Resumo:
T cell stimulation requires the input and integration of external signals. Signaling through the T cell receptor (TCR) is known to induce formation of the membrane-tethered CBM complex, comprising CARMA1, BCL10, and MALT1, which is required for TCR-mediated NF-κB activation. TCR signaling has been shown to activate NOTCH proteins, transmembrane receptors also implicated in NF-κB activation. However, the link between TCR-mediated NOTCH signaling and early events leading to induction of NF-κB activity remains unclear. In this report, we demonstrate a novel cytosolic function for NOTCH1 and show that it is essential to CBM complex formation. Using a model of skin allograft rejection, we show in vivo that NOTCH1 acts in the same functional pathway as PKCθ, a T cell-specific kinase important for CBM assembly and classical NF-κB activation. We further demonstrate in vitro NOTCH1 associates physically with PKCθ and CARMA1 in the cytosol. Unexpectedly, when NOTCH1 expression was abrogated using RNAi approaches, interactions between CARMA1, BCL10, and MALT1 were lost. This failure in CBM assembly reduced inhibitor of kappa B alpha phosphorylation and diminished NF-κB-DNA binding. Finally, using a luciferase gene reporter assay, we show the intracellular domain of NOTCH1 can initiate robust NF-κB activity in stimulated T cells, even when NOTCH1 is excluded from the nucleus through modifications that restrict it to the cytoplasm or hold it tethered to the membrane. Collectively, these observations provide evidence that NOTCH1 may facilitate early events during T cell activation by nucleating the CBM complex and initiating NF-κB signaling.
Resumo:
Purpose: Pretargeted radioimmunotherapy (PRIT) using streptavidin (SAv)-biotin technology can deliver higher therapeutic doses of radioactivity to tumors than conventional RIT. However, "endogenous" biotin can interfere with the effectiveness of this approach by blocking binding of radiolabeled biotin to SAv. We engineered a series of SAv FPs that downmodulate the affinity of SAv for biotin, while retaining high avidity for divalent DOTA-bis-biotin to circumvent this problem.Experimental Design: The single-chain variable region gene of the murine 1F5 anti-CD20 antibody was fused to the wild-type (WT) SAv gene and to mutant SAv genes, Y43A-SAv and S45A-SAv. FPs were expressed, purified, and compared in studies using athymic mice bearing Ramos lymphoma xenografts.Results: Biodistribution studies showed delivery of more radioactivity to tumors of mice pretargeted with mutant SAv FPs followed by (111)In-DOTA-bis-biotin [6.2 +/- 1.7% of the injected dose per gram (%ID/gm) of tumor 24 hours after Y43A-SAv FP and 5.6 +/- 2.2%ID/g with S45A-SAv FP] than in mice on normal diets pretargeted with WT-SAv FP (2.5 +/- 1.6%ID/g; P = 0.01). These superior biodistributions translated into superior antitumor efficacy in mice treated with mutant FPs and (90)Y-DOTA-bis-biotin [tumor volumes after 11 days: 237 +/- 66 mm(3) with Y43A-SAv, 543 +/- 320 mm(3) with S45A-SAv, 1129 +/- 322 mm(3) with WT-SAv, and 1435 +/- 212 mm(3) with control FP (P < 0.0001)].Conclusions: Genetically engineered mutant-SAv FPs and bis-biotin reagents provide an attractive alternative to current SAv-biotin PRIT methods in settings where endogenous biotin levels are high. Clin Cancer Res; 17(23); 7373-82. (C)2011 AACR.
Resumo:
The biological activity of interleukin (IL)-2 and other cytokines in vivo can be augmented by binding to certain anti-cytokine monoclonal antibodies (mAb). Here, we review evidence on how IL-2/anti-IL-2 mAb complexes can be used to cause selective stimulation and expansion of certain T-cell subsets. With some anti-IL-2 mAbs, injection of IL-2/mAb complexes leads to expansion of CD8 T effector cells but not CD4 T regulatory cells (Tregs); these complexes exert less adverse side effects than soluble IL-2 and display powerful antitumor activity. Other IL-2/mAb complexes have minimal effects on CD8 T cells but cause marked expansion of Tregs. Preconditioning mice with these complexes leads to permanent acceptance of MHC-disparate pancreatic islets in the absence of immunosuppression.
Resumo:
Biodistribution and tumor uptake of a chimeric human-mouse monoclonal antibody (MAb) and the original mouse MAb have been comparatively studied. METHODS: Eighteen patients with suspected colorectal cancer scheduled for surgery underwent immunoscintigraphy with 123I-labeled chimeric anti-CEA MAb. Iodine-125 and 131I trace-labeled chimeric and original mouse MAb were simultaneously injected for biodistribution studies. RESULTS: Similar serum kinetics and a low immunogenicity were observed for both antibodies. Mean binding capacity to CEA measured in PBS after radiolabeling was identical for both MAbs and it was slightly decreased when measured in serum 1-4 hr after injection. Radiochromatograms of patients sera showed immune complex formation related to the amount of circulating CEA. Postoperative ex vivo radioactivity counting in tissue samples revealed similar antibody distributions with notably similar antibody uptakes in tumors. High tumor uptakes (between 0.02 to 0.06% injected dose per g) were observed in 3 of 13 patients operated for primary or metastatic colorectal cancer. CONCLUSION: In this dual-label technique, the radioiodinated anti-CEA IgG4 chimeric MAb and the original mouse IgG1 MAb were shown to have very similar behavior in colorectal cancer patients.
Resumo:
Plasma cells represent the end stage of B-cell development and play a key role in providing an efficient antibody response, but they are also involved in numerous pathologies. Here we show that CD93, a receptor expressed during early B-cell development, is reinduced during plasma-cell differentiation. High CD93/CD138 expression was restricted to antibody-secreting cells both in T-dependent and T-independent responses as naive, memory, and germinal-center B cells remained CD93-negative. CD93 was expressed on (pre)plasmablasts/plasma cells, including long-lived plasma cells that showed decreased cell cycle activity, high levels of isotype-switched Ig secretion, and modification of the transcriptional network. T-independent and T-dependent stimuli led to re-expression of CD93 via 2 pathways, either before or after CD138 or Blimp-1 expression. Strikingly, while humoral immune responses initially proceeded normally, CD93-deficient mice were unable to maintain antibody secretion and bone-marrow plasma-cell numbers, demonstrating that CD93 is important for the maintenance of plasma cells in bone marrow niches.
Resumo:
Abstract
Resumo:
Although the activation of the A(1)-subtype of the adenosine receptors (A(1)AR) is arrhythmogenic in the developing heart, little is known about the underlying downstream mechanisms. The aim of this study was to determine to what extent the transient receptor potential canonical (TRPC) channel 3, functioning as receptor-operated channel (ROC), contributes to the A(1)AR-induced conduction disturbances. Using embryonic atrial and ventricular myocytes obtained from 4-day-old chick embryos, we found that the specific activation of A(1)AR by CCPA induced sarcolemmal Ca(2+) entry. However, A(1)AR stimulation did not induce Ca(2+) release from the sarcoplasmic reticulum. Specific blockade of TRPC3 activity by Pyr3, by a dominant negative of TRPC3 construct, or inhibition of phospholipase Cs and PKCs strongly inhibited the A(1)AR-enhanced Ca(2+) entry. Ca(2+) entry through TRPC3 was activated by the 1,2-diacylglycerol (DAG) analog OAG via PKC-independent and -dependent mechanisms in atrial and ventricular myocytes, respectively. In parallel, inhibition of the atypical PKCζ by myristoylated PKCζ pseudosubstrate inhibitor significantly decreased the A(1)AR-enhanced Ca(2+) entry in both types of myocytes. Additionally, electrocardiography showed that inhibition of TRPC3 channel suppressed transient A(1)AR-induced conduction disturbances in the embryonic heart. Our data showing that A(1)AR activation subtly mediates a proarrhythmic Ca(2+) entry through TRPC3-encoded ROC by stimulating the phospholipase C/DAG/PKC cascade provide evidence for a novel pathway whereby Ca(2+) entry and cardiac function are altered. Thus, the A(1)AR-TRPC3 axis may represent a potential therapeutic target.
Resumo:
To test whether endotoxin decreases blood pressure acutely in rats by activating the plasma kinin-forming system, plasma kallikrein activity was determined in different experimental settings of endotoxemia. Conscious normotensive rats were infused for 45 min with endotoxin (LPS E. coli 0111:B4) at a dose (0.01 mg/min) which had no effect on blood pressure. Additional rats were infused with the vehicle of endotoxin. Plasma prekallikrein activity was measured at the end of the 45 min infusions. In other rats, a bolus intravenous injection of endotoxin (2 mg) was administered following the 45 min infusion of endotoxin or its vehicle. In these two latter groups of rats, plasma prekallikrein activity was determined 15 min after administration of the bolus dose of endotoxin. In rats pretreated with the endotoxin infusion, the bolus dose of endotoxin had no significant effect on blood pressure, whereas rats infused with the vehicle became and remained hypotensive up to the end of the experiment. There was however no significant difference in plasma prekallikrein activity within the different groups of rats. In another group of rats, dextran sulfate (0.25 mg i.v.), which activates factor XII and thereby the conversion of prekallikrein to kallikrein, induced a short-lasting fall in blood pressure. 15 min after administration of dextran sulfate, plasma prekallikrein activity was almost completely suppressed. These results obtained in unanesthetized rats strongly suggest that the blood pressure fall induced by E. coli endotoxin is not due to activation of prekallikrein and consequently of the kinin-forming system.
Resumo:
beta-Adrenergic agonists are important regulators of perinatal pulmonary circulation. They cause vasodilation primarily via the adenyl cyclase-adenosine 3',5'-cyclic monophosphate (cAMP) pathway. We examined the responses of isolated fourth-generation pulmonary veins of term fetal (145 +/- 2 days gestation) and newborn (10 +/- 1 days) lambs to isoproterenol, a beta-adrenergic agonist. In vessels preconstricted with U-46619 (a thromboxane A2 analog), isoproterenol induced greater relaxation in pulmonary veins of newborn lambs than in those of fetal lambs. The relaxation was eliminated by propranolol, a beta-adrenergic antagonist. Forskolin, an activator of adenyl cyclase, also caused greater relaxation of veins of newborn than those of fetal lambs. 8-Bromoadenosine 3',5'-cyclic monophosphate, a cell membrane-permeable analog of cAMP, induced a similar relaxation of all vessels. Biochemical studies show that isoproterenol and forskolin induced a greater increase in cAMP content and in adenyl cyclase activity of pulmonary veins in the newborn than in the fetal lamb. These results demonstrate that beta-adrenergic-agonist-mediated relaxation of pulmonary veins increases with maturation. An increase in the activity of adenyl cyclase may contribute to the change.
Resumo:
Abstract: Protective immune responses against pathogen invasion and transformed cells requires the coordinated action of distinct leukocyte subsets and soluble factors, overall termed immunological network. Among antigen-presenting cells (APC), a crucial role is played by dendritic cells (DC), which initiate, amplify and determine the outcome of the immune response. Micro-environmental conditions profoundly influence DC in such ways that the resulting immune response ranges from successful immune stimulation to abortive response or immune suppression. For instance, the presence in the milieu of anti-inflammatory cytokine interleukin-10 (IL-10) reverts most of the effects mediated on DC by even strong pro-inflammatory agents such as bacterial Lipopolysaccharide (LPS), in terms of differentiation, activation and functions. In an environment containing both LPS and IL-10, uncoupling of receptors for inflammatory chemokines already occurs after a few hours and in a reversible manner on DC, allowing scavenging of chemokines and, consequently, attenuation of the inflammatory process which could be deleterious to the organism. By studying the effects on DC of concomitant stimulation by LPS and IL-10 from the gene expression point of view, we were able to define four distinct transcriptional programs: A. the inhibition of inflammation and immunity, B. the regulation of tissue remodeling, C. the tuning of cytokine/growth factor receptors and G protein-coupled receptors, D. the stimulation of B cell function and lymphoid tissue neogenesis. Among the latter genes, we further demonstrated that IL-10 synergizes with Toll-like receptor ligands for the production of functionally active B cell attracting chemokine CXCL13. Our data provide evidence that the combined exposure of APC to LPS and IL-10, via the production of CXCL13, involves humoral immunity by attracting antibody-producing cells. It is well known that the persistent release of CXCL13 leads to the development of ectopic lymphoid tissue aggregates and production of high levels of antibodies, thus favoring the induction of auto-immunity. Our findings suggest that the IL-10 produced in chronic inflammatory conditions may promote lymphoid tissue neogenesis through increased release of CXCL13. IL-10 is an anti-inflammatory cytokine inhibiting cellular-mediated TH 1-polarized immune responses. In this study we demonstrate that IL- 10 strongly supports the development of humoral immunity. IL-10 and CXCL13 can thus be targets for specific therapies in auto-immune diseases.