991 resultados para Antibody fragments


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammatory destruction of insulin-producing β cells in the pancreatic islets is the hallmark of insulin-dependent diabetes mellitus, a spontaneous autoimmune disease of non-obese diabetic mice resembling human juvenile (type I) diabetes. Histochemical analysis of diabetic pancreata revealed that mononuclear cells infiltrating the islets and causing autoimmune insulitis, as well as local islet cells, express the CD44 receptor; hyaluronic acid, the principal ligand of CD44, is detected in the islet periphery and islet endothelium. Injection of anti-CD44 mAb 1 hr before cell transfer of diabetogenic splenocytes and subsequently on alternate days for 4 weeks induced considerable resistance to diabetes in recipient mice, reflected by reduced insulitis. Contact sensitivity to oxazolone was not influenced by this treatment. A similar antidiabetic effect was observed even when the anti-CD44 mAb administration was initiated at the time of disease onset: i.e., 4–7 weeks after cell transfer. Administration of the enzyme hyaluronidase also induced appreciable resistance to insulin-dependent diabetes mellitus, suggesting that the CD44–hyaluronic acid interaction is involved in the development of the disease. These findings demonstrate that CD44-positive inflammatory cells may be a potential therapeutic target in insulin-dependent diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a technique called the generation of longer cDNA fragments from serial analysis of gene expression (SAGE) tags for gene identification (GLGI), to convert SAGE tags of 10 bases into their corresponding 3′ cDNA fragments covering hundred bases. A primer containing the 10-base SAGE tag is used as the sense primer, and a single base anchored oligo(dT) primer is used as an antisense primer in PCR, together with Pfu DNA polymerase. By using this approach, a cDNA fragment extending from the SAGE tag toward the 3′ end of the corresponding sequence can be generated. Application of the GLGI technique can solve two critical issues in applying the SAGE technique: one is that a longer fragment corresponding to a SAGE tag, which has no match in databases, can be generated for further studies; the other is that the specific fragment corresponding to a SAGE tag can be identified from multiple sequences that match the same SAGE tag. The development of the GLGI method provides several potential applications. First, it provides a strategy for even wider application of the SAGE technique for quantitative analysis of global gene expression. Second, a combined application of SAGE/GLGI can be used to complete the catalogue of the expressed genes in human and in other eukaryotic species. Third, it can be used to identify the 3′ cDNA sequence from any exon within a gene. It can also be used to confirm the reality of exons predicted by bioinformatic tools in genomic sequences. Fourth, a combined application of SAGE/GLGI can be applied to define the 3′ boundary of expressed genes in the genomic sequences in human and in other eukaryotic genomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that the ligand pocket of a lipocalin from Pieris brassicae, the bilin-binding protein (BBP), can be reshaped by combinatorial protein design such that it recognizes fluorescein, an established immunological hapten. For this purpose 16 residues at the center of the binding site, which is formed by four loops on top of an eight-stranded β-barrel, were subjected to random mutagenesis. Fluorescein-binding BBP variants were then selected from the mutant library by bacterial phage display. Three variants were identified that complex fluorescein with high affinity, exhibiting dissociation constants as low as 35.2 nM. Notably, one of these variants effects almost complete quenching of the ligand fluorescence, similarly as an anti-fluorescein antibody. Detailed ligand-binding studies and site-directed mutagenesis experiments indicated (i) that the molecular recognition of fluorescein is specific and (ii) that charged residues at the center of the pocket are responsible for tight complex formation. Sequence comparison of the BBP variants directed against fluorescein with the wild-type protein and with further variants that were selected against several other ligands revealed that all of the randomized amino acid positions are variable. Hence, a lipocalin can be used for generating molecular pockets with a diversity of shapes. We term this class of engineered proteins “anticalins.” Their one-domain scaffold makes them a promising alternative to antibodies to create a stable receptor protein for a ligand of choice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conjugation of drugs with antibodies to surface endothelial antigens is a potential strategy for drug delivery to endothelium. We studied antibodies to platelet-endothelial adhesion molecule 1 (PECAM-1, a stably expressed endothelial antigen) as carriers for vascular immunotargeting. Although 125I-labeled anti-PECAM bound to endothelial cells in culture, the antibody was poorly internalized by the cells and accumulated poorly after intravenous administration in mice and rats. However, conjugation of biotinylated anti-PECAM (b-anti-PECAM) with streptavidin (SA) markedly stimulated uptake and internalization of anti-PECAM by endothelial cells and by cells expressing PECAM. In addition, conjugation with streptavidin markedly stimulated uptake of 125I-labeled b-anti-PECAM in perfused rat lungs and in the lungs of intact animals after either intravenous or intraarterial injection. The antioxidant enzyme catalase conjugated with b-anti-PECAM/SA bound to endothelial cells in culture, entered the cells, escaped intracellular degradation, and protected the cells against H2O2-induced injury. Anti-PECAM/SA/125I-catalase accumulated in the lungs after intravenous injection or in the perfused rat lungs and protected these lungs against H2O2-induced injury. Thus, modification of a poor carrier antibody with biotin and SA provides an approach for facilitation of antibody-mediated drug targeting. Anti-PECAM/SA is a promising candidate for vascular immunotargeting of bioactive drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To accelerate gene isolation from plants by positional cloning, vector systems suitable for both chromosome walking and genetic complementation are highly desirable. Therefore, we developed a transformation-competent artificial chromosome (TAC) vector, pYLTAC7, that can accept and maintain large genomic DNA fragments stably in both Escherichia coli and Agrobacterium tumefaciens. Furthermore, it has the cis sequences required for Agrobacterium-mediated gene transfer into plants. We cloned large genomic DNA fragments of Arabidopsis thaliana into the vector and showed that most of the DNA fragments were maintained stably. Several TAC clones carrying 40- to 80-kb genomic DNA fragments were transferred back into Arabidopsis with high efficiency and shown to be inherited faithfully among the progeny. Furthermore, we demonstrated the practical utility of this vector system for positional cloning in Arabidopsis. A TAC contig was constructed in the region of the SGR1 locus, and individual clones with ca. 80-kb inserts were tested for their ability to complement the gravitropic defects of a homozygous mutant line. Successful complementation enabled the physical location of SGR1 to be delimited with high precision and confidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Memory is a hallmark of immunity. Memory carried by antibodies is largely responsible for protection against reinfection with most known acutely lethal infectious agents and is the basis for most clinically successful vaccines. However, the nature of long-term B cell and antibody memory is still unclear. B cell memory was studied here after infection of mice with the rabies-like cytopathic vesicular stomatitis virus, the noncytopathic lymphocytic choriomeningitis virus (Armstrong and WE), and after immunization with various inert viral antigens inducing naive B cells to differentiate either to plasma cells or memory B cells in germinal centers of secondary lymphoid organs. The results show that in contrast to very low background levels against internal viral antigens, no significant neutralizing antibody memory was observed in the absence of antigen and suggest that memory B cells (i) are long-lived in the absence of antigen, nondividing, and relatively resistant to irradiation, and (ii) must be stimulated by antigen to differentiate to short-lived antibody-secreting plasma cells, a process that is also efficient in the bone marrow and always depends on radiosensitive, specific T help. Therefore, for vaccines to induce long-term protective antibody titers, they need to repeatedly provide, or continuously maintain, antigen in minimal quantities over a prolonged time period in secondary lymphoid organs or the bone marrow for sufficient numbers of long-lived memory B cells to mature to short-lived plasma cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large library of phage-displayed human single-chain Fv antibodies (scFv), containing 6.7 × 109 members, was generated by improving the steps of library construction. Fourteen different protein antigens were used to affinity select antibodies from this library. A panel of specific antibodies was isolated with each antigen, and each panel contained an average of 8.7 different scFv. Measurements of antibody–antigen interactions revealed several affinities below 1 nM, comparable to affinities observed during the secondary murine immune response. In particular, four different scFv recognizing the ErbB2 protein had affinities ranging from 220 pM to 4 nM. Antibodies derived from the library proved to be useful reagents for immunoassays. For example, antibodies generated to the Chlamydia trachomatis elementary bodies stained Chlamydia-infected cells, but not uninfected cells. These results demonstrate that phage antibody libraries are ideally suited for the rapid production of panels of high-affinity mAbs to a wide variety of protein antigens. Such libraries should prove especially useful for generating reagents to study the function of gene products identified by genome projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure of the complex of a catalytic antibody with its cationic hapten at 1.9-Å resolution demonstrates that the hapten amidinium group is stabilized through an ionic pair interaction with the carboxylate of a combining-site residue. The location of this carboxylate allows it to act as a general base in an allylic rearrangement. When compared with structures of other antibody complexes in which the positive moiety of the hapten is stabilized mostly by cation–π interactions, this structure shows that the amidinium moiety is a useful candidate to elicit a carboxylate in an antibody combining site at a predetermined location with respect to the hapten. More generally, this structure highlights the advantage of a bidentate hapten for the programmed positioning of a chemically reactive residue in an antibody through charge complementarity to the hapten.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine human Ig heavy chain variable region (VH) gene segment organization on individual homologous chromosomes, an efficient approach has been developed. Single spermatozoa were used as subjects for the study. Upon sperm lysis, VH regions in each sperm were randomly sheared into fragments by the random Brownian force. The fragments were separated from each other by aliquoting the lysate into a certain number of tubes. The gene segments in the VH1 and VH4 families in each tube were identified by denaturing gradient gel electrophoresis after PCR amplification. The polymorphic VH sequences were used to determine the parental origins of the analyzed sperm. VH segment organization in the parental haplotypes was determined by aligning the overlapping fragments from the spermatozoa with the corresponding haplotypes. Based on this comparison between the resulting haplotype maps and the composite map reported previously, the VH region on chromosome 14 could be subdivided into four portions. The numbers and compositions of the VH gene segments differ considerably among the maps in two portions, but are highly conserved in the other two. The data also indicate that the VH region on chromosome 15 may contain a large duplicated block with copy number varying among haplotypes. The approach used in the present study may be used to construct high-resolution haplotype maps without molecular cloning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the obstacles to AIDS vaccine development is the variability of HIV-1 within individuals and within infected populations, enabling viral escape from highly specific vaccine induced immune responses. An understanding of the different immune mechanisms capable of inhibiting HIV infection may be of benefit in the eventual design of vaccines effective against HIV-1 variants. To study this we first compared the immune responses induced in Rhesus monkeys by using two different immunization strategies based on the same vaccine strain of HIV-1. We then utilized a chimeric simian/HIV that expressed the envelope of a dual tropic HIV-1 escape variant isolated from a later time point from the same patient from which the vaccine strain was isolated. Upon challenge, one vaccine group was completely protected from infection, whereas all of the other vaccinees and controls became infected. Protected macaques developed highest titers of heterologous neutralizing antibodies, and consistently elevated HIV-1-specific T helper responses. Furthermore, only protected animals had markedly increased concentrations of RANTES, macrophage inflammatory proteins 1α and 1β produced by circulating CD8+ T cells. These results suggest that vaccine strategies that induce multiple effector mechanisms in concert with β-chemokines may be desired in the generation of protective immune responses by HIV-1 vaccines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of novel fluorogenic retro-aldol substrates for aldolase antibody 38C2 is described. These substrates are efficiently and specifically processed by antibody aldolases but not by natural cellular enzymes. Together, the fluorogenic substrates and antibody aldolases provide reporter gene systems that are compatible with living cells. The broad scope of the antibody aldolase allows for the processing of a range of substrates that can be designed to allow fluorescence monitoring at a variety of wavelengths. We also have developed the following concept in fluorescent protein tags. β-Diketones bearing a fluorescent tag are bound covalently by the aldolase antibody and not other proteins. We anticipate that proteins fused with the antibody can be tagged specifically and covalently within living cells with fluorophores of virtually any color, thereby providing an alternative to green fluorescent protein fusions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To estimate the rate of seroconversion to positivity for hepatitis C antibody in repeat blood donors in England and to describe the probable routes of infection in these donors.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In most vertebrate embryos and neonates studied to date unique antigen receptors (antibodies and T cell receptors) are expressed that possess a limited immune repertoire. We have isolated a subclass of IgM, IgM1gj, from the nurse shark Ginglymostoma cirratum that is preferentially expressed in neonates. The variable (V) region gene encoding the heavy (H) chain underwent V-D-J rearrangement in germ cells (“germline-joined”). Such H chain V genes were discovered over 10 years ago in sharks but until now were not shown to be expressed at appreciable levels; we find expression of H1gj in primary and secondary lymphoid tissues early in life, but in adults only in primary lymphoid tissue, which is identified in this work as the epigonal organ. H1gj chain associates covalently with light (L) chains and is most similar in sequence to IgM H chains, but like mammalian IgG has three rather than the four IgM constant domains; deletion of the ancestral IgM C2 domain thus defines both IgG and IgM1gj. Because sharks are the members of the oldest vertebrate class known to possess antibodies, unique or specialized antibodies expressed early in ontogeny in sharks and other vertebrates were likely present at the inception of the adaptive immune system.