965 resultados para Anthropic principle
Resumo:
The principle of equal political representation can be undermined by differences in economic resources among citizens. Poor citizens are likely to hold policy preferences that differ from those of richer citizens. At the same time, their lack of resources can have as a consequence that these preferences are not taken into consideration by their representatives. Focusing on the case of the Swiss Parliament and using survey data on the opinions of citizens and MPs in the 2007-2011 legislature, this study investigates whether the income of citizens systematically affects the proximity of their policy preferences with stances of their representatives. It demonstrates that on economic issues MPs hold preferences that are generally less in favour of the state's intervention in the economy than the median citizen and that relatively poor citizens are less well represented as compared to citizens with high incomes. This remains true when taking into account only the opinions of the most knowledgeable citizens among these groups as well as when the focus is only on those who turned out to vote.
Resumo:
Background: Excessive exposure to solar Ultra-Violet (UV) light is the main cause of most skin cancers in humans. Factors such as the increase of solar irradiation at ground level (anthropic pollution), the rise in standard of living (vacation in sunny areas), and (mostly) the development of outdoor activities have contributed to increase exposure. Thus, unsurprisingly, incidence of skin cancers has increased over the last decades more than that of any other cancer. Melanoma is the most lethal cutaneous cancer, while cutaneous carcinomas are the most common cancer type worldwide. UV exposure depends on environmental as well as individual factors related to activity. The influence of individual factors on exposure among building workers was investigated in a previous study. Posture and orientation were found to account for at least 38% of the total variance of relative individual exposure. A high variance of short-term exposure was observed between different body locations, indicating the occurrence of intense, subacute exposures. It was also found that effective short-term exposure ranged between 0 and 200% of ambient irradiation, suggesting that ambient irradiation is a poor predictor of effective exposure. Various dosimetric techniques enable to assess individual effective exposure, but dosimetric measurements remain tedious and tend to be situation-specific. As a matter of facts, individual factors (exposure time, body posture and orientation in the sun) often limit the extrapolation of exposure results to similar activities conducted in other conditions. Objective: The research presented in this paper aims at developing and validating a predictive tool of effective individual exposure to solar UV. Methods: Existing computer graphic techniques (3D rendering) were adapted to reflect solar exposure conditions and calculate short-term anatomical doses. A numerical model, represented as a 3D triangular mesh, is used to represent the exposed body. The amount of solar energy received by each "triangle is calculated, taking into account irradiation intensity, incidence angle and possible shadowing from other body parts. The model take into account the three components of the solar irradiation (direct, diffuse and albedo) as well as the orientation and posture of the body. Field measurements were carried out using a forensic mannequin at the Payerne MeteoSwiss station. Short-term dosimetric measurements were performed in 7 anatomical locations for 5 body postures. Field results were compared to the model prediction obtained from the numerical model. Results: The best match between prediction and measurements was obtained for upper body parts such as shoulders (Ratio Modelled/Measured; Mean = 1.21, SD = 0.34) and neck (Mean = 0.81, SD = 0.32). Small curved body parts such as forehead (Mean = 6.48, SD = 9.61) exhibited a lower matching. The prediction is less accurate for complex postures such as kneeling (Mean = 4.13, SD = 8.38) compared to standing up (Mean = 0.85, SD = 0.48). The values obtained from the dosimeters and the ones computed from the model are globally consistent. Conclusion: Although further development and validation are required, these results suggest that effective exposure could be predicted for a given activity (work or leisure) in various ambient irradiation conditions. Using a generic modelling approach is of high interest in terms of implementation costs as well as predictive and retrospective capabilities.
Resumo:
The thesis is situated in the domain of contemporary metaphysics of science. The question is which ontology fits best with our knowledge of the world. The method chosen is the one of evaluating the consequences of different ontological frameworks against the background of our scientific knowledge of the world. The thesis analyses the two main frameworks in today's metaphysics of science, Humeanism and dispositionalism. It advocates that only an unorthodox version of Humeanism and only an unorthodox version of dispositionalism can be defended, the unorthodox character of these versions consisting in taking the fundamental properties to be relations rather than intrinsic properties. The thesis then sets out in detail what such an unorthodox version of Humeanism amounts to. Chapters 1 and 2 introduce the standard versions of Humeanism and dispositionalism, focussing on the accounts of laws of nature and causation. Chapter 3 compares both these positions and concludes that as far as the orthodox versions are concerned, dispositionalism fares better than Humeanism, since it can avoid Humeanism's commitments to quidditism and humility. However, as is argued in chapter 4, instead of replying to the objections from quidditism and humility by switching to dispositionalism, there is an unorthodox version of Humeanism available that does not run into these problematic consequences and that is supported by science: if one takes the fundamental physical properties to be relations instead of intrinsic properties, the objection from quidditism is avoided, since there is no hidden intrinsic essence of relations. As regards the objection from humility, one can maintain that science is in principle able to provide knowledge of the fundamental relations that there are in the world so that there is no principled ignorance. Consequently, the thesis concludes that Humeanism and dispositionalism are on a par as regards the remaining charge of humility. Unorthodox Humeanism provides a competitive and adequate ontology in the light of contemporary science.
Resumo:
Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) experiments are widely used to determine, within entire genomes, the occupancy sites of any protein of interest, including, for example, transcription factors, RNA polymerases, or histones with or without various modifications. In addition to allowing the determination of occupancy sites within one cell type and under one condition, this method allows, in principle, the establishment and comparison of occupancy maps in various cell types, tissues, and conditions. Such comparisons require, however, that samples be normalized. Widely used normalization methods that include a quantile normalization step perform well when factor occupancy varies at a subset of sites, but may miss uniform genome-wide increases or decreases in site occupancy. We describe a spike adjustment procedure (SAP) that, unlike commonly used normalization methods intervening at the analysis stage, entails an experimental step prior to immunoprecipitation. A constant, low amount from a single batch of chromatin of a foreign genome is added to the experimental chromatin. This "spike" chromatin then serves as an internal control to which the experimental signals can be adjusted. We show that the method improves similarity between replicates and reveals biological differences including global and largely uniform changes.
Resumo:
Circadian cycles and cell cycles are two fundamental periodic processes with a period in the range of 1 day. Consequently, coupling between such cycles can lead to synchronization. Here, we estimated the mutual interactions between the two oscillators by time-lapse imaging of single mammalian NIH3T3 fibroblasts during several days. The analysis of thousands of circadian cycles in dividing cells clearly indicated that both oscillators tick in a 1:1 mode-locked state, with cell divisions occurring tightly 5 h before the peak in circadian Rev-Erbα-YFP reporter expression. In principle, such synchrony may be caused by either unidirectional or bidirectional coupling. While gating of cell division by the circadian cycle has been most studied, our data combined with stochastic modeling unambiguously show that the reverse coupling is predominant in NIH3T3 cells. Moreover, temperature, genetic, and pharmacological perturbations showed that the two interacting cellular oscillators adopt a synchronized state that is highly robust over a wide range of parameters. These findings have implications for circadian function in proliferative tissues, including epidermis, immune cells, and cancer.
Resumo:
Root system architecture is a trait that displays considerable plasticity because of its sensitivity to environmental stimuli. Nevertheless, to a significant degree it is genetically constrained as suggested by surveys of its natural genetic variation. A few regulators of root system architecture have been isolated as quantitative trait loci through the natural variation approach in the dicotyledon model, Arabidopsis. This provides proof of principle that allelic variation for root system architecture traits exists, is genetically tractable, and might be exploited for crop breeding. Beyond Arabidopsis, Brachypodium could serve as both a credible and experimentally accessible model for root system architecture variation in monocotyledons, as suggested by first glimpses of the different root morphologies of Brachypodium accessions. Whether a direct knowledge transfer gained from molecular model system studies will work in practice remains unclear however, because of a lack of comprehensive understanding of root system physiology in the native context. For instance, apart from a few notable exceptions, the adaptive value of genetic variation in root system modulators is unknown. Future studies should thus aim at comprehensive characterization of the role of genetic players in root system architecture variation by taking into account the native environmental conditions, in particular soil characteristics.
Resumo:
The scenario considered here is one where brain connectivity is represented as a network and an experimenter wishes to assess the evidence for an experimental effect at each of the typically thousands of connections comprising the network. To do this, a univariate model is independently fitted to each connection. It would be unwise to declare significance based on an uncorrected threshold of α=0.05, since the expected number of false positives for a network comprising N=90 nodes and N(N-1)/2=4005 connections would be 200. Control of Type I errors over all connections is therefore necessary. The network-based statistic (NBS) and spatial pairwise clustering (SPC) are two distinct methods that have been used to control family-wise errors when assessing the evidence for an experimental effect with mass univariate testing. The basic principle of the NBS and SPC is the same as supra-threshold voxel clustering. Unlike voxel clustering, where the definition of a voxel cluster is unambiguous, 'clusters' formed among supra-threshold connections can be defined in different ways. The NBS defines clusters using the graph theoretical concept of connected components. SPC on the other hand uses a more stringent pairwise clustering concept. The purpose of this article is to compare the pros and cons of the NBS and SPC, provide some guidelines on their practical use and demonstrate their utility using a case study involving neuroimaging data.
Resumo:
The Spanish judicial system is independent and headed by the Supreme Court. Spain has a civil law system. The criminal procedure is governed by the legality principle--by opposition to the opportunity or expediency principle--which implies that prosecution must take place in all cases in which sufficient evidence exists of guilt. Traditionally, the role of the PPS in Spain has been very limited during the investigative stage of the process. That stage is under the responsibility of the Examining Magistrate (EM). Since the end of the 1980s, a series of modifications has been introduced in order to extend the functions of the PPS. In 1988, the PPS received extended competences which allow them to receive reports of offenses. Upon knowing of an offense (reported or known to have been committed), the PPS can initiate the criminal proceeding. The PPS is also allowed to lead a sort of plea bargain under a series of restrictive conditions and only for some offenses. At the same time, the PPS received extended competences in the juvenile justice criminal proceeding in 2000. With all this said, the role of the PPS has not changed radically and, during the investigative stage of the process, their main role remains the presentation of the accusation, playing a more active role during the trial stage of the proceeding. In this article the national criminal justice system of Spain is described. Special attention is paid to the function of the PPS within this framework and its relationship to police and courts. The article refers to legal provisions and the factual handling of criminal cases.
Resumo:
Quantum molecular similarity (QMS) techniques are used to assess the response of the electron density of various small molecules to application of a static, uniform electric field. Likewise, QMS is used to analyze the changes in electron density generated by the process of floating a basis set. The results obtained show an interrelation between the floating process, the optimum geometry, and the presence of an external field. Cases involving the Le Chatelier principle are discussed, and an insight on the changes of bond critical point properties, self-similarity values and density differences is performed
Resumo:
An overview is given on a study which showed that not only in chemical reactions but also in the favorable case of nontotally symmetric vibrations where the chemical and external potentials keep approximately constant, the generalized maximum hardness principle (GMHP) and generalized minimum polarizability principle (GMPP) may not be obeyed. A method that allows an accurate determination of the nontotally symmetric molecular distortions with more marked GMPP or anti-GMPP character through diagonalization of the polarizability Hessian matrix is introduced
Resumo:
OBJECTIVE: Routine prenatal screening for Down syndrome challenges professional non-directiveness and patient autonomy in daily clinical practices. This paper aims to describe how professionals negotiate their role when a pregnant woman asks them to become involved in the decision-making process implied by screening. METHODS: Forty-one semi-structured interviews were conducted with gynaecologists-obstetricians (n=26) and midwives (n=15) in a large Swiss city. RESULTS: Three professional profiles were constructed along a continuum that defines the relative distance or proximity towards patients' demands for professional involvement in the decision-making process. The first profile insists on enforcing patient responsibility, wherein the healthcare provider avoids any form of professional participation. A second profile defends the idea of a shared decision making between patients and professionals. The third highlights the intervening factors that justify professionals' involvement in decisions. CONCLUSIONS: These results illustrate various applications of the principle of autonomy and highlight the complexity of the doctor-patient relationship amidst medical decisions today.
Resumo:
The hypothesis of minimum entropy production is applied to a simple one-dimensional energy balance model and is analysed for different values of the radiative forcing due to greenhouse gases. The extremum principle is used to determine the planetary “conductivity” and to avoid the “diffusive” approximation, which is commonly assumed in this type of model. For present conditions the result at minimum radiative entropy production is similar to that obtained by applying the classical model. Other climatic scenarios show visible differences, with better behaviour for the extremal case
Resumo:
The clinical demand for a device to monitor Blood Pressure (BP) in ambulatory scenarios with minimal use of inflation cuffs is increasing. Based on the so-called Pulse Wave Velocity (PWV) principle, this paper introduces and evaluates a novel concept of BP monitor that can be fully integrated within a chest sensor. After a preliminary calibration, the sensor provides non-occlusive beat-by-beat estimations of Mean Arterial Pressure (MAP) by measuring the Pulse Transit Time (PTT) of arterial pressure pulses travelling from the ascending aorta towards the subcutaneous vasculature of the chest. In a cohort of 15 healthy male subjects, a total of 462 simultaneous readings consisting of reference MAP and chest PTT were acquired. Each subject was recorded at three different days: D, D+3 and D+14. Overall, the implemented protocol induced MAP values to range from 80 ± 6 mmHg in baseline, to 107 ± 9 mmHg during isometric handgrip maneuvers. Agreement between reference and chest-sensor MAP values was tested by using intraclass correlation coefficient (ICC = 0.78) and Bland-Altman analysis (mean error = 0.7 mmHg, standard deviation = 5.1 mmHg). The cumulative percentage of MAP values provided by the chest sensor falling within a range of ±5 mmHg compared to reference MAP readings was of 70%, within ±10 mmHg was of 91%, and within ±15mmHg was of 98%. These results point at the fact that the chest sensor complies with the British Hypertension Society (BHS) requirements of Grade A BP monitors, when applied to MAP readings. Grade A performance was maintained even two weeks after having performed the initial subject-dependent calibration. In conclusion, this paper introduces a sensor and a calibration strategy to perform MAP measurements at the chest. The encouraging performance of the presented technique paves the way towards an ambulatory-compliant, continuous and non-occlusive BP monitoring system.
Resumo:
In vivo dosimetry is a way to verify the radiation dose delivered to the patient in measuring the dose generally during the first fraction of the treatment. It is the only dose delivery control based on a measurement performed during the treatment. In today's radiotherapy practice, the dose delivered to the patient is planned using 3D dose calculation algorithms and volumetric images representing the patient. Due to the high accuracy and precision necessary in radiation treatments, national and international organisations like ICRU and AAPM recommend the use of in vivo dosimetry. It is also mandatory in some countries like France. Various in vivo dosimetry methods have been developed during the past years. These methods are point-, line-, plane- or 3D dose controls. A 3D in vivo dosimetry provides the most information about the dose delivered to the patient, with respect to ID and 2D methods. However, to our knowledge, it is generally not routinely applied to patient treatments yet. The aim of this PhD thesis was to determine whether it is possible to reconstruct the 3D delivered dose using transmitted beam measurements in the context of narrow beams. An iterative dose reconstruction method has been described and implemented. The iterative algorithm includes a simple 3D dose calculation algorithm based on the convolution/superposition principle. The methodology was applied to narrow beams produced by a conventional 6 MV linac. The transmitted dose was measured using an array of ion chambers, as to simulate the linear nature of a tomotherapy detector. We showed that the iterative algorithm converges quickly and reconstructs the dose within a good agreement (at least 3% / 3 mm locally), which is inside the 5% recommended by the ICRU. Moreover it was demonstrated on phantom measurements that the proposed method allows us detecting some set-up errors and interfraction geometry modifications. We also have discussed the limitations of the 3D dose reconstruction for dose delivery error detection. Afterwards, stability tests of the tomotherapy MVCT built-in onboard detector was performed in order to evaluate if such a detector is suitable for 3D in-vivo dosimetry. The detector showed stability on short and long terms comparable to other imaging devices as the EPIDs, also used for in vivo dosimetry. Subsequently, a methodology for the dose reconstruction using the tomotherapy MVCT detector is proposed in the context of static irradiations. This manuscript is composed of two articles and a script providing further information related to this work. In the latter, the first chapter introduces the state-of-the-art of in vivo dosimetry and adaptive radiotherapy, and explains why we are interested in performing 3D dose reconstructions. In chapter 2 a dose calculation algorithm implemented for this work is reviewed with a detailed description of the physical parameters needed for calculating 3D absorbed dose distributions. The tomotherapy MVCT detector used for transit measurements and its characteristics are described in chapter 3. Chapter 4 contains a first article entitled '3D dose reconstruction for narrow beams using ion chamber array measurements', which describes the dose reconstruction method and presents tests of the methodology on phantoms irradiated with 6 MV narrow photon beams. Chapter 5 contains a second article 'Stability of the Helical TomoTherapy HiArt II detector for treatment beam irradiations. A dose reconstruction process specific to the use of the tomotherapy MVCT detector is presented in chapter 6. A discussion and perspectives of the PhD thesis are presented in chapter 7, followed by a conclusion in chapter 8. The tomotherapy treatment device is described in appendix 1 and an overview of 3D conformai- and intensity modulated radiotherapy is presented in appendix 2. - La dosimétrie in vivo est une technique utilisée pour vérifier la dose délivrée au patient en faisant une mesure, généralement pendant la première séance du traitement. Il s'agit de la seule technique de contrôle de la dose délivrée basée sur une mesure réalisée durant l'irradiation du patient. La dose au patient est calculée au moyen d'algorithmes 3D utilisant des images volumétriques du patient. En raison de la haute précision nécessaire lors des traitements de radiothérapie, des organismes nationaux et internationaux tels que l'ICRU et l'AAPM recommandent l'utilisation de la dosimétrie in vivo, qui est devenue obligatoire dans certains pays dont la France. Diverses méthodes de dosimétrie in vivo existent. Elles peuvent être classées en dosimétrie ponctuelle, planaire ou tridimensionnelle. La dosimétrie 3D est celle qui fournit le plus d'information sur la dose délivrée. Cependant, à notre connaissance, elle n'est généralement pas appliquée dans la routine clinique. Le but de cette recherche était de déterminer s'il est possible de reconstruire la dose 3D délivrée en se basant sur des mesures de la dose transmise, dans le contexte des faisceaux étroits. Une méthode itérative de reconstruction de la dose a été décrite et implémentée. L'algorithme itératif contient un algorithme simple basé sur le principe de convolution/superposition pour le calcul de la dose. La dose transmise a été mesurée à l'aide d'une série de chambres à ionisations alignées afin de simuler la nature linéaire du détecteur de la tomothérapie. Nous avons montré que l'algorithme itératif converge rapidement et qu'il permet de reconstruire la dose délivrée avec une bonne précision (au moins 3 % localement / 3 mm). De plus, nous avons démontré que cette méthode permet de détecter certaines erreurs de positionnement du patient, ainsi que des modifications géométriques qui peuvent subvenir entre les séances de traitement. Nous avons discuté les limites de cette méthode pour la détection de certaines erreurs d'irradiation. Par la suite, des tests de stabilité du détecteur MVCT intégré à la tomothérapie ont été effectués, dans le but de déterminer si ce dernier peut être utilisé pour la dosimétrie in vivo. Ce détecteur a démontré une stabilité à court et à long terme comparable à d'autres détecteurs tels que les EPIDs également utilisés pour l'imagerie et la dosimétrie in vivo. Pour finir, une adaptation de la méthode de reconstruction de la dose a été proposée afin de pouvoir l'implémenter sur une installation de tomothérapie. Ce manuscrit est composé de deux articles et d'un script contenant des informations supplémentaires sur ce travail. Dans ce dernier, le premier chapitre introduit l'état de l'art de la dosimétrie in vivo et de la radiothérapie adaptative, et explique pourquoi nous nous intéressons à la reconstruction 3D de la dose délivrée. Dans le chapitre 2, l'algorithme 3D de calcul de dose implémenté pour ce travail est décrit, ainsi que les paramètres physiques principaux nécessaires pour le calcul de dose. Les caractéristiques du détecteur MVCT de la tomothérapie utilisé pour les mesures de transit sont décrites dans le chapitre 3. Le chapitre 4 contient un premier article intitulé '3D dose reconstruction for narrow beams using ion chamber array measurements', qui décrit la méthode de reconstruction et présente des tests de la méthodologie sur des fantômes irradiés avec des faisceaux étroits. Le chapitre 5 contient un second article intitulé 'Stability of the Helical TomoTherapy HiArt II detector for treatment beam irradiations'. Un procédé de reconstruction de la dose spécifique pour l'utilisation du détecteur MVCT de la tomothérapie est présenté au chapitre 6. Une discussion et les perspectives de la thèse de doctorat sont présentées au chapitre 7, suivies par une conclusion au chapitre 8. Le concept de la tomothérapie est exposé dans l'annexe 1. Pour finir, la radiothérapie «informationnelle 3D et la radiothérapie par modulation d'intensité sont présentées dans l'annexe 2.
Resumo:
An increasing number of terminally ill patients are admitted into the intensive care unit, and decisions of limitation, or of palliative care are made to avoid medical futility. The principle of autonomy states that the patient (or in case of necessity his relatives) should make end of life decision after detailed information. The exercise of autonomy is difficult due to the disease of the patient and the nature of invasive treatments, but also due to organisational and communication barriers. The latter can be surmounted by a proactive approach. Early communication with the patient and relatives about the sometimes-limited expectations of an invasive treatment plan, and the possibility of palliative care allow to integer patient's preferences in the formulation of a therapeutical plan.