937 resultados para Anomalous propagation
Resumo:
Due to manufacturing or damage process, brittle materials present a large number of micro-cracks which are randomly distributed. The lifetime of these materials is governed by crack propagation under the applied mechanical and thermal loadings. In order to deal with these kinds of materials, the present work develops a boundary element method (BEM) model allowing for the analysis of multiple random crack propagation in plane structures. The adopted formulation is based on the dual BEM, for which singular and hyper-singular integral equations are used. An iterative scheme to predict the crack growth path and crack length increment is proposed. This scheme enables us to simulate the localization and coalescence phenomena, which are the main contribution of this paper. Considering the fracture mechanics approach, the displacement correlation technique is applied to evaluate the stress intensity factors. The propagation angle and the equivalent stress intensity factor are calculated using the theory of maximum circumferential stress. Examples of multi-fractured domains, loaded up to rupture, are considered to illustrate the applicability of the proposed method. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The Generalized Finite Element Method (GFEM) is employed in this paper for the numerical analysis of three-dimensional solids tinder nonlinear behavior. A brief summary of the GFEM as well as a description of the formulation of the hexahedral element based oil the proposed enrichment strategy are initially presented. Next, in order to introduce the nonlinear analysis of solids, two constitutive models are briefly reviewed: Lemaitre`s model, in which damage and plasticity are coupled, and Mazars`s damage model suitable for concrete tinder increased loading. Both models are employed in the framework of a nonlocal approach to ensure solution objectivity. In the numerical analyses carried out, a selective enrichment of approximation at regions of concern in the domain (mainly those with high strain and damage gradients) is exploited. Such a possibility makes the three-dimensional analysis less expensive and practicable since re-meshing resources, characteristic of h-adaptivity, can be minimized. Moreover, a combination of three-dimensional analysis and the selective enrichment presents a valuable good tool for a better description of both damage and plastic strain scatterings.
Resumo:
Geosynthetics interlayer systems are effective techniques to control reflective cracking in damaged pavements. It comprises the inclusion of nonwoven geotextiles between the damaged layer and the new overlay of the pavement to reduce the propagation of cracks and to extend pavement life. However, the success of this technique depends directly on the understanding of the geotextile`s behavior when impregnated with asphalt This paper evaluates different nonwoven geotextiles frequently used in anti-reflective cracking systems, focusing on initial stiffness gain and permeability reduction after asphalt impregnation. Fresh and impregnated samples of polyester and polypropylene nonwoven geotextiles were tested. Cationic rapid setting emulsified asphalt was used as asphalt binder. Wide-width tensile tests were carried out based on the specification of ABNT - NBR 12824 (1993). Water vapor transmission tests were conducted according to ASTM E 96M (2005). Results of tensile tests on impregnated geotextiles showed a significant increase on tensile strength values, probably due to the inter contact of the fibers. Results also showed high increase in strength values at strain levels less than 0.05% and decrease on stiffness gains with increase of strains. Water vapor transmission tests demonstrated that cationic asphalt emulsion applied on nonwoven geotextiles allows a drastic reduction in permeability values to turn nonwoven geotextiles into a low permeability barrier. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The central issue for pillar design in underground coal mining is the in situ uniaxial compressive strength (sigma (cm)). The paper proposes a new method for estimating in situ uniaxial compressive strength in coal seams based on laboratory strength and P wave propagation velocity. It describes the collection of samples in the Bonito coal seam, Fontanella Mine, southern Brazil, the techniques used for the structural mapping of the coal seam and determination of seismic wave propagation velocity as well as the laboratory procedures used to determine the strength and ultrasonic wave velocity. The results obtained using the new methodology are compared with those from seven other techniques for estimating in situ rock mass uniaxial compressive strength.
Resumo:
The fatigue crack growth properties of friction stir welded joints of 2024-T3 aluminium alloy have been studied under constant load amplitude (increasing-Delta K), with special emphasis on the residual stress (inverse weight function) effects on longitudinal and transverse crack growth rate predictions (Glinka`s method). In general, welded joints were more resistant to longitudinally growing fatigue cracks than the parent material at threshold Delta K values, when beneficial thermal residual stresses decelerated crack growth rate, while the opposite behaviour was observed next to K-C instability, basically due to monotonic fracture modes intercepting fatigue crack growth in weld microstructures. As a result, fatigue crack growth rate (FCGR) predictions were conservative at lower propagation rates and non-conservative for faster cracks. Regarding transverse cracks, intense compressive residual stresses rendered welded plates more fatigue resistant than neat parent plate. However, once the crack tip entered the more brittle weld region substantial acceleration of FCGR occurred due to operative monotonic tensile modes of fracture, leading to non-conservative crack growth rate predictions next to K-C instability. At threshold Delta K values non-conservative predictions values resulted from residual stress relaxation. Improvements on predicted FCGR values were strongly dependent on how the progressive plastic relaxation of the residual stress field was considered.
Resumo:
A methodology for the computational modeling of the fatigue crack growth in pressurized shell structures, based on the finite element method and concepts of Linear Elastic Fracture Mechanics, is presented. This methodology is based on that developed by Potyondy [Potyondy D, Wawrzynek PA, Ingraffea, AR. Discrete crack growth analysis methodology for through crack in pressurized fuselage structures. Int J Numer Methods Eng 1995;38:1633-1644], which consists of using four stress intensity factors, computed from the modified crack integral method, to predict the fatigue propagation life as well as the crack trajectory, which is computed as part of the numerical simulation. Some issues not presented in the study of Potyondy are investigated herein such as the influence of the crack increment size and the number of nodes per element (4 or 9 nodes) on the simulation results by means of a fatigue crack propagation simulation of a Boeing 737 airplane fuselage. The results of this simulation are compared with experimental results and those obtained by Potyondy [1]. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Sigma phase is a deleterious one which can be formed in duplex stainless steels during heat treatment or welding. Aiming to accompany this transformation, ferrite and sigma percentage and hardness were measured on samples of a UNS S31803 duplex stainless steel submitted to heat treatment. These results were compared to measurements obtained from ultrasound and eddy current techniques, i.e., velocity and impedance, respectively. Additionally, backscattered signals produced by wave propagation were acquired during ultrasonic inspection as well as magnetic Barkhausen noise during magnetic inspection. Both signal types were processed via a combination of detrended-fluctuation analysis (DFA) and principal component analysis (PCA). The techniques used were proven to be sensitive to changes in samples related to sigma phase formation due to heat treatment. Furthermore, there is an advantage using these methods since they are nondestructive. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The elastic mechanical behavior of elastic materials is modeled by a pair of independent constants (Young`s modulus and Poisson`s coefficient). A precise measurement for both constants is necessary in some applications, such as the quality control of mechanical elements and standard materials used for the calibration of some equipment. Ultrasonic techniques have been used because wave velocity depends on the elastic properties of the propagation medium. The ultrasonic test shows better repeatability and accuracy than the tensile and indentation test. In this work, the theoretical and experimental aspects related to the ultrasonic through-transmission technique for the characterization of elastic solids is presented. Furthermore, an amorphous material and some polycrystalline materials were tested. Results have shown an excellent repeatability and numerical errors that are less than 3% in high-purity samples.
Resumo:
A computational method based on the impulse response and on the discrete representation computational concept is proposed for the determination of the echo responses from arbitrary-geometry targets. It is supposed that each point of the transducer aperture can be considered as a source radiating hemispherical waves to the reflector. The local interaction with each of the hemispherical waves at the reflector surface can be modeled as a plane wave impinging on a planar surface, using the respective reflection coefficient. The method is valid for all field regions and can be performed for any excitation waveform radiated from an arbitrary acoustic aperture. The effects of target geometry, position, and material on both the amplitude and the shape of the echo response are studied. The model is compared with experimental results obtained using broadband transducers together with plane and cylindrical concave rectangular reflectors (aluminum, brass, and acrylic), as well as a circular cavity placed on a plane surface, in a water medium. The method can predict the measured echoes accurately. This paper shows an improved approach of the method, considering the reflection coefficient for all incident hemispherical waves arriving at each point of the target surface.
Resumo:
This work explores the design of piezoelectric transducers based on functional material gradation, here named functionally graded piezoelectric transducer (FGPT). Depending on the applications, FGPTs must achieve several goals, which are essentially related to the transducer resonance frequency, vibration modes, and excitation strength at specific resonance frequencies. Several approaches can be used to achieve these goals; however, this work focuses on finding the optimal material gradation of FGPTs by means of topology optimization. Three objective functions are proposed: (i) to obtain the FGPT optimal material gradation for maximizing specified resonance frequencies; (ii) to design piezoelectric resonators, thus, the optimal material gradation is found for achieving desirable eigenvalues and eigenmodes; and (iii) to find the optimal material distribution of FGPTs, which maximizes specified excitation strength. To track the desirable vibration mode, a mode-tracking method utilizing the `modal assurance criterion` is applied. The continuous change of piezoelectric, dielectric, and elastic properties is achieved by using the graded finite element concept. The optimization algorithm is constructed based on sequential linear programming, and the concept of continuum approximation of material distribution. To illustrate the method, 2D FGPTs are designed for each objective function. In addition, the FGPT performance is compared with the non-FGPT one.
Resumo:
This paper presents a family of algorithms for approximate inference in credal networks (that is, models based on directed acyclic graphs and set-valued probabilities) that contain only binary variables. Such networks can represent incomplete or vague beliefs, lack of data, and disagreements among experts; they can also encode models based on belief functions and possibilistic measures. All algorithms for approximate inference in this paper rely on exact inferences in credal networks based on polytrees with binary variables, as these inferences have polynomial complexity. We are inspired by approximate algorithms for Bayesian networks; thus the Loopy 2U algorithm resembles Loopy Belief Propagation, while the Iterated Partial Evaluation and Structured Variational 2U algorithms are, respectively, based on Localized Partial Evaluation and variational techniques. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
In this paper, processing methods of Fourier optics implemented in a digital holographic microscopy system are presented. The proposed methodology is based on the possibility of the digital holography in carrying out the whole reconstruction of the recorded wave front and consequently, the determination of the phase and intensity distribution in any arbitrary plane located between the object and the recording plane. In this way, in digital holographic microscopy the field produced by the objective lens can be reconstructed along its propagation, allowing the reconstruction of the back focal plane of the lens, so that the complex amplitudes of the Fraunhofer diffraction, or equivalently the Fourier transform, of the light distribution across the object can be known. The manipulation of Fourier transform plane makes possible the design of digital methods of optical processing and image analysis. The proposed method has a great practical utility and represents a powerful tool in image analysis and data processing. The theoretical aspects of the method are presented, and its validity has been demonstrated using computer generated holograms and images simulations of microscopic objects. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The effect of different microstructures on the polarization resistance (Rp) and the hydrogen-induced cracking (HIC) of a micro-alloyed steel austenitized and submitted to different cooling rates was studied. Samples 19.1 x 6 x 2 mm, containing the whole thickness of the plate were extracted from a 20 mm plate and heat treated on a quenching dilatometer, were submitted to Rp and HIC corrosion tests. Both Rp and HIC tests followed as close as possible ASTM G59 and NACE standard TM0284-2003, in this case, modified only with regard to the size of the samples. Steel samples transformed from austenite by a slow cooling (cooling rate of 0.5 degrees C.s(-1)) showed higher susceptibility to hydrogen-induced cracking, with large cracks in the middle of the sample propagating along segregation bands, corresponding to the centerline of the plate thickness. For cooling rates of 10 degrees C.s(-1), only small cracks were found in the matrix and micro cracks nucleated at non-metallic inclusions. For higher cooling rates (40 degrees C.s(-1)) very few small cracks were detected, linked to non-metallic inclusions. This result suggests that structures formed by polygonal structures and segregation bands (were cutectoid microconstituents predominate) have higher susceptibility to HIC. Structures predominantly formed by acicular ferrite make it difficult to propagate the cracks among non-oriented and interlaced acicular ferrite crystals. Smaller segregation bands containing eutectoid products also help inhibit cracking and crack propagation; segregation bands can function as pipelines for hydrogen diffusion and offer a path of stress concentration for the propagation of cracks, frequently associated to non-metallic inclusions. Polarization resistance essays performed on the steel in theas received condition, prior to any heat treatment, showed larger differences between the regions of the plate, with a considerably lower Rp in the centerline. The austenitization heat treatments followed by cooling rates of 0.5 e 10 degrees C.s(-1) made more uniform the corrosion resistance along the thickness of the plate. The effects of heat treatments on the corrosion resistance are probably related to the microconstituent formed, allied to the chemical homogenization of the impurities concentrated on the centerline of the plate.
Resumo:
Alpha prime formation leads to material embrittlement and deterioration of corrosion resistance. In the present study, the mechanical and corrosion behavior of super duplex stainless steel UNS S32520 aged at 475 degrees C from 0.5 h to 1,032 h was evaluated using microhardness measurements, Charpy impact tests, electrochemical impedance spectroscopy, and cyclic polarization curves. The sensibility of these tests to the effects of alpha prime phase was investigated. The microhardness test showed a gradual increase in hardness with aging time, whereas the impact tests revealed losses of about 80% in the energy absorption capacity for the material aged for 12 h in comparison with the solution-annealed samples. The most responsive analysis was the impact test, which indirectly revealed the presence of this deleterious phase in samples aged for 0.5 h. The electrochemical impedance spectroscopy and polarization tests were not highly sensitive to the alpha prime phase unless these are present in large amounts in the stainless steel.
Resumo:
Coaracy Nunes was the first hydroelectric power plant in the Amazon region, being located in Araguari River, Amapa State, Brazil. The plant operates since 1976, presenting now a nominal capacity of 78 MW. The shear pins, which are installed in the turbine hydraulic arms to control the wicket gate and regulate the water flow into the turbine blades, suffered several breakdowns since 2004. These shear pins are made of an ASTM 410 stainless steel and were designed to break by a shear overload of 120 kN. Fractographic investigation of the pins, however, revealed two types of fracture topographies: a region of stable crack propagation area, with non-pronounced striation and secondary cracks; and a region of unstable propagation, featuring elongated dimples. These results indicated that the stable crack propagation occurred by fatigue (bidirectional bending), which was nucleated at machining marks under high nominal load. Finite element analysis was carried out using two loading conditions (pure shear and a combination of shear and bending) and the results indicated that the presence of a bending stress strongly increased the stress concentration factor (85% rise in the shear stress and 130% rise in the Von Mises stress). Misalignment during shear pins assembly associated with vibration might have promoted the premature failure of the shear by bending fatigue. (C) 2008 Elsevier Ltd. All rights reserved.