907 resultados para Anodic Electrode
Resumo:
A study of the kinetics of oxygen evolution in alkaline conditions from ceramic films of Mn2O3 supported on stainless steel was carried out. This study has been done through the determination of transfer coefficients, Tafel slopes and exchange currents using potentiodynamic and quasi-potentiostatic measurements. The activation energy was determined as a function of the overpotential and, additionally, the electrode active surface was estimated. The results are consistent with data already published for other electrodes, implying that the methods used in this work were reliable and precise.
Resumo:
Perfluoro and sulfonated ion-exchange polymers are recognized as a very useful material for various mechanistic studies and applications in electrochemistry. These polymers are characterized by high equivalent weights and by a low number of ion-exchange sites interposed between long organic chains. The solubility enables a preparation of stable polyelectrolyte films on the electrode surface. Examples of the determination of trace metals and organic componds in real environmental samples are presented.
Resumo:
Methylene blue (AM) was immobilised on surface of the silica gel modified with niobium oxide. This material was incorporated in a carbon paste electrode, which showed a redox couple in a potential of E= -113 mV vs SCE in KCl solution at pH 7.0. The formal potential, in 0.5 mol L-1 KCl at pH 7.0, shifted about 290 mV towards more positive values compared to those observed for AM solubilized in aqueous solution. The dependence on the formal potential with solution pH between 2 and 7 was much lower than those observed for AM solubilized in aqueous solution.
Resumo:
It has been carried out an investigation of ethanol electro-oxidation on Ti/IrO2 electrodes. The experimental results show a high selectivity towards acetaldehyde formation thus, offering potential advantages in cost and availability of raw material. It has been observed that the electrode is partially blocked by a film formed after the oxidation of the starting material which can be removed by pulse technique between RDO and RDH onset. The mechanism and the selectivity of the product formed is presented.
Resumo:
Nickel metal hydride (Ni-MH) batteries have emerged as an alternative for replacement of nickel-cadmium batteries, because of their more environmental compatibility and high energy capacity. In this article, we described the properties and applications for Ni-MH batteries, giving some emphasis on the metal-hydride electrode, including the description of composition, the charge storage capacity and the discharge profile. The key component of the nickel-metal hydride electrode is a hydrogen storage alloy whose composition is formulated to obtain a high stable material over a large number of charge-discharge cycles.
Resumo:
A flow cell assembled on the original geometry of a graphite tube to achieve permanent chemical modifier is proposed. The graphite tube operates as the working electrode. A stainless steel tube, positioned downstream from the working electrode, was used as the auxiliary electrode. The potential value applied on the graphite electrode was measured against a micro reference electrode (Ag/AgCl) inserted into the auxiliary electrode. Palladium solutions in acetate buffer (100 mmol L-1, pH = 4.8), flowing at 0.5 mL min-1 for 60 min was used to perform the electrochemical modification. A mercury solution (1 ng) was used to evaluate the performance of the permanent palladium modifier.
Resumo:
Cadmium UPD on Au was studied by voltammetric and microgravimetric measurements. In the oxide formation/reduction potential region, a mass increasing/decreasing of 32 ng cm-2 was associated to incorporation/elimination of one oxygen per active site. The modifications promoted in the voltammetric and mass profiles by 10-5 M Cd(ClO4)2 are restricted to potentials more negative than 0.4 V. After a 120 s potential delay at 0.05 V, the positive sweep reveals an anodic peak with charge of 40 muC cm-2 and mass decrease of 22 ng cm-2, associated to Cd ads dissolution. Sulphate or chloride was added to the solution without significant influence, due to the low coverage with Cd or anions.
Resumo:
Platinum is widely used as electrode in electrocatalytic processes, however the use of polycrystalline electrodes introduces a series of variables in the electrochemical system due to the aleatory contribution of all the crystallographic orientations with different surface packing of atoms. Single crystal platinum electrodes of low Miller index present surface structure of high regularity and serve as model to establish a correlation among the macroscopic and microscopic properties of the electrochemical interface. Therefore, the main aim of this work is the study of the voltammetric profiles of the reversible adsorption-desorption of hydrogen on Pt(100), Pt(110) and Pt(111), in order to correlate the electrochemical properties of each different orientation with the surface atomic structure.
Resumo:
Organosulfur compounds present in garlic and onion have been evaluated as inhibitors of chemical carcinogenesis. Among them diallylsulfide was mainly investigated and studies demonstrated its metabolization to the corresponding sulfoxide and sulfone. In this work, we report the investigation of the interaction between the diallylsulfide and its oxidized derivatives, through cyclic voltammetry, with horse heart cytocrome-c (on a modified electrode with 4-mercaptopyridine). Our results suggest that there is a reversible interaction between cytocrome-c and diallylsulfide and diallylsulfone and an irreversible interaction with the diallylsulfoxide.
Resumo:
The aim of this work is to describe the recent area that it has been developed for the construction of amperometric sensors, with the purpose to make possible a more effective electron transfer between enzyme and electrode. The advances reported in the literature will be described, such as enzymatic configurations that can be mimic using the chemistry of the artificial enzymes.
Resumo:
Equilibrium constants (K) of some oxoacidbasic reactions in molten NaCl in the temperature range of 1100K to 1200K, have been measured potentiometrically with a calcia stabilized zirconia oxide ion (O2-) indicator electrode. In molten NaCl at 1100K the pKs values (in molality scale) for HCl/H2O and HO-/H2O are respectively 11.0 ± 0.3; 1.6 ± 0.3 and the pKs for CaO is 4.3 ± 0.3. The results have been compared with those determined previously by Combes for the molten equimolar NaCl-KCl mixture and are in good agreement with literature data and gives some qualitative explanation of the comparison of oxoacidbasic properties between molten NaCl and NaCl-KCl.
Resumo:
The most relevant advances on the analytical applications of chemically modified electrodes (CME) are presented. CME have received great attention due to the possibility of electrode surface modification including chemisorption, composite generation and polymer coating. In recent years, the interest in CME has increased overall to improve the sensitivity and selectivity of the electroanalytical probes, considering the electron mediator incorporation and the new conducting polymers development. The general procedures employed for the electrode modification and the operational characteristics of some electrochemical sensors are discussed.
Resumo:
This paper presents some results on the employ of recycled graphite electrode obtained from used common 1.5 V batteries in the preparation of modified electrode and the electrocatalytical hydrogenation of benzaldehyde and of n-valeraldehyde. This inexpensive and easy to obtain electrode was prepared by coating it with a 1:1 mixed film of poly-(allylfenil ether): poly-[allyl p-(2-ethylammonium) benzene ether] and introduction of dispersed platinum particles by ion exchange and reduction of PtCl4-2. Electroreduction of H+ from aqueous H2SO4 using the proposed electrode hydrogenated the substrates in a way comparable with that of vitreous carbon electrode.
Resumo:
UNS S31254 SS electrodes have been built to substitute platinum in conductimetric titrations. The electrodes were tested in both acid-basic titration (chloridric acid and sodium hydroxide) and precipitation titration (sodium chloride and argentum nitrate as titrant). The practical application was exemplified from conductimetric tritations of HF ¾ HNO3 mixtures used in metalurgical industry to passivate stainless steels. The results were compared with those obtained using commercial platinum electrodes. The equivalent volumes obtained were comparable within 3% experimental error. Its application depends on the nature of electrolyte. These results have shown that stainless steel, less expensive than platinum (about three order of magnitude), can substitute platinum electrodes in routine analyses and didactic laboratories.
Resumo:
The theoretical aspects of square wave voltammetry were discussed. Reversible, irreversible and quase-reversible electrode reactions were analyzed and the correlations between parameters like frequency, period, square wave potential and amplitude were showed. In this way, diagnostic relationships allow to characterize the electrode process. The analytical applications were discussed in base of the increment in the analytical response (current) due to the characteristics of the developed equations and the unique mode of collecting the electrode response, i.e., the direct and reverse signals. Finally, recent advances in the basic theory, as the applications to the hydrodynamic electrode and the ultramicroelectrode were also analyzed, and the multiple pulses square wave voltammetry was also introduced.