939 resultados para Animal Nutritional Physiological Phenomena
Resumo:
A full-ring PET insert device should be able to enhance the image resolution of existing small-animal PET scanners. Methods: The device consists of 18 high-resolution PET detectors in a cylindric enclosure. Each detector contains a cerium-doped lutetium oxyorthosilicate array (12 x 12 crystals, 0.72 x 1.51 x 3.75 mm each) coupled to a position-sensitive photomultiplier tube via an optical fiber bundle made of 8 x 16 square multiclad fibers. Signals from the insert detectors are connected to the scanner through the electronics of the disabled first ring of detectors, which permits coincidence detection between the 2 systems. Energy resolution of a detector was measured using a Ge-68 point source, and a calibrated 68Ge point source stepped across the axial field of view (FOV) provided the sensitivity profile of the system. A Na-22 point source imaged at different offsets from the center characterized the in-plane resolution of the insert system. Imaging was then performed with a Derenzo phantom filled with 19.5 MBq of F-18-fluoride and imaged for 2 h; a 24.3-g mouse injected with 129.5 MBq of F-18-fluoride and imaged in 5 bed positions at 3.5 h after injection; and a 22.8-g mouse injected with 14.3 MBq of F-18-FDG and imaged for 2 h with electrocardiogram gating. Results: The energy resolution of a typical detector module at 511 keV is 19.0% +/- 3.1 %. The peak sensitivity of the system is approximately 2.67%. The image resolution of the system ranges from 1.0- to 1.8-mm full width at half maximum near the center of the FOV, depending on the type of coincidence events used for image reconstruction. Derenzo phantom and mouse bone images showed significant improvement in transaxial image resolution using the insert device. Mouse heart images demonstrated the gated imaging capability of the device. Conclusion: We have built a prototype full-ring insert device for a small-animal PET scanner to provide higher-resolution PET images within a reduced imaging FOV. Development of additional correction techniques are needed to achieve quantitative imaging with such an insert.
Resumo:
Locked-to-sliding phase transition has been studied in the driven two-dimensional Frenkel-Kontorova model with the square symmetric substrate potential. It is found that as the driving force increases, the system transfers from the locked state to the sliding state where the motion of particles is in the direction different from that of driving force. With the further increase in driving force, at some critical value, the particles start to move in the direction of driving force. These two critical forces, the static friction or depinning force, and the kinetic friction force for which particles move in the direction of driving force have been analyzed for different system parameters. Different scenarios of phase transitions have been examined and dynamical phases are classified. In the case of zero misfit angle, the analytical expressions for static and kinetic friction force have been obtained.
Resumo:
Purpose: To investigate the effects of gamma-ray radiation on the physiological, morphological characters and chromosome aberrations of minitubers. Materials and methods: Minitubers of one potato cultivar, 'Shepody', were irradiated with 8 doses of gamma-rays (0, 10, 20, 30, 40, 50, 60, 70 and 80 Gy [Gray]) to investigate the effects of radiation on emergence ability, plant height and root length, morphological variations, chromosome aberrations, M-1 (first generation mutants) tuber number and size of minituber plants. Results: Compared with the non-irradiated controls, the whole period of emergence was prolonged by 10-15 days for minitubers treated with gamma-ray radiation, but low doses of radiation (10, 20 and 30 Gy) promoted the emergence percentage of minitubers. With an increase in radiation dose, the emergence percentage, plant height and root length of minituber plants were significantly inhibited at 40 and 50 Gy. No emergence occurred at 60 Gy and higher doses. After radiation, a series of morphological variations and chromosome aberrations appeared in minituber plants. Radiation with 20 Gy promoted tuber formation, and the average number and diameter of M-1 tubers per plant were significantly increased over the control by 71% and 34%, respectively. Conclusion: Low doses of radiation (10-30 Gy) might be used as a valuable parameter to study the improvement of minitubers by gamma-ray radiation treatment.
Resumo:
Melatonin is a highly conserved molecule that not only exists in animals, but also is present in bacteria, unicellular organisms and in plants. Since melatonin is an antioxidant, in plants melatonin was speculated to protect them from intrinsic and environmental oxidative stress. More importantly, melatonin in edible plants inevitably enters animals and human through feed and food. In this study, more than 100 Chinese medicinal herbs were analyzed using the methods of solid phase extraction and HPLC-FD on-line with MS to determine whether melatonin is present in these commonly used herbs. Melatonin was detected in majority of these plants. Sixty-four of them contain melatonin in excess of 10 ng per gram dry mass. Melatonin levels in several herbs are in excess of 1000 ng/g. It is well known that normal average physiological plasma levels of melatonin are only 10-60 pg/mL. These high level-melatonin containing plants are traditionally used to treat diseases which presumably involve free radical damage. The current study provides new information concerning one potentially effective constituent present in a large number of medicinal herbs. The results suggest that these herbs should be reevaluated in reference to their nutritional and medicinal value. (C) 2003 Elsevier Science Inc. All rights reserved.
Resumo:
We reported here four structures of lanthanide-amino acid complexes obtained under near physiological pH conditions and their individual formula can be described as [Tb-2(DL-Cys)(4)(H2O)(8)]Cl-2 (1), [Eu-4(mu(3)-OH)(4)(L-Asp)(2)(L-HAsp)(3)(H2O)(7)] Cl center dot 11.5H(2)O (2), [Eu-8-(L-HVal) (16)(H2O)(32)]Cl-24 center dot 12.5H(2)O (3), and [Tb-2(DL-HVal)(4)(H2O)(8)]Cl-6 center dot 2H(2)O (4). These complexes showed diverse structures and have shown potential application in DNA detection. We studied the interactions of the complexes with five single-stranded DNA and found different fluorescence enhancement, binding affinity and binding stoichiometry when the complexes are bound to DNA.
Resumo:
In this paper, the interaction mechanism between La3+ and microperoxidase-11 (MP-11) in the imitated physiological solution was investigated with the electrochemical and spectroscopic methods. It was found that when the molar ratio of La3+, and MP-11 is low, such as 2, La3+ can coordinate with oxygen in the propionic acid group of the heme group in the MP-11 molecule, forming the La-MP-11 complexes and leading to the increase in the non-planarity of the porphyrin cycle in the heme group and then the increase in the extent of exposure of the electrochemically active center, Fe(I I I) in the porphyrin cycle of the heme group. The increase in the extent of exposure of the electrochemically active center, Fe(III) in the porphyrin cycle of the heme group would increase the reversibility of the electrochemical reaction of the La-MP-11 complexes and its electrocatalytic activity for the reduction of H2O2. The results of the chromatographic analysis demonstrated that the average molar ratio of La3+ and MP-11 in the La-MP-11 complexes is 1.62.When the molar ratio of La3+ and MP-11 is high, such as 3, La3+ would shear some amino acid residues of the peptide of MP-11. Therefore, many La3+ ions can bind to the oxygen- and/or nitrogen-containing groups in the sheared amino acid residues except coordinating with the sheared and non-sheared MP-11 molecules.
Resumo:
In this paper, the interaction between La3+ and microperoxidase-11 (MP-11) in the imitated physiological solution was investigated with the electrochemical method, circular dichroism (CD) and ultraviolet-visible (UV-vis) absorption spectroscopy. It was found that the interaction ways between La3+ and MP-11 are different with increasing the molar ratio of La3+ and MP-11. When the molar ratio of La3+ and MP-11 is less than 2, La3+ mainly interacts with the metacetonic acid group of the heme group in the MP-11 molecules, causing the increase in the non-planarity of the porphyrin cycle in the heme group and the decrease in the content of the random coil conformation of MP-11. These structural changes would increase the exposure extent of the electrochemical active center of MP-11 and thus, La3+ can promote the electrochemical reaction of MP-11 and its electrocatalytic activity for the reduction of H2O2 at the glassy carbon (GC) electrode. However, when the molar ratio of La3+ and MP-11 is larger than 3, except binding to the carbonyl oxygen of the metacetonic acid group in the heme group, La3+ interacts also with the oxygen-containing groups of the amides in the polypeptide chains of the MP-11 molecules, leading to the increase in the contents of the random coil conformation in the peptide of the MP-11 molecule, comparing with that for the molar ratio of less than 2.
Resumo:
Viscosities of aqueous solutions of five polyethylene oxide (PEO) samples with molar masses from 1.5 x 10(5) to 1.0 x 10(6) were carefully measured in a polytetrafluoroethylene (PTFE) capillary Ubbelohde viscometer in the concentration range from dilute down to extremely dilute concentration regions and compared with those of the same sample obtained from a glass capillary viscometer. At the same time, viscosities of aqueous solutions of three PEG samples in glass and paraffin-coated capillary viscosity were measured. The wall effects occurred in viscosity measurements for PEO and PEG aqueous solutions in different capillary viscometers were theoretically analyzed and discussed. It was found that different interfacial behaviors occurred in both hydrophobic and hydrophilic capillary viscometers respectively and the interfacial behaviors also exhibit molar mass dependence.
Resumo:
Ring-banded spherulites in crystallization of poly(epsilon-caprolactone) and poly (styrene-random-acrylonitrile) blends were observed with polarizing optical microscopy and digital image analysis technique was applied directly to the image obtained by polarizing microscope, Several new interesting phenomena were found. One is that the ring-banded structure is still clearly seen after the analyzer was removed and this astonished phenomenon couldn't result from the general concept about formation mechanism of ring-banded spherulite - lamellae twisting, Another one is that there is a slight, dark line in the bright band when cross polars were added, which may be related to the formation process and mechanism of ring-banded spherulites in the blends of poly (epsilon-caprolactone) and poly (styrene-random-acrylonitrile).
Resumo:
The luminescence properties of Ce3+, Gd3+, and Tb3+ have been investigated in the compound CaAl2B2O7. The single excitation band peaking at about 320 nm and single emission band peaking at about 384 nm for Ce3+, without the characteristic doublet, are attributed to the extensive crystal-field splitting of 4f ground state. The emission of Gd3+ consists of well-known sharp lines and two weak bands around 319.5 and 325 nm. These bands are due to the coupling of Gd3+ with BO33- groups. The green emission of Tb3+ is considerably sensitized by Ce3+. Energy transfer from Ce3+ to Tb3+ in CaAl2B2O7 is efficient. (C) 1997 Elsevier Science Ltd.