925 resultados para Android Monitor Porting Interfaccia Wireless WiFi kernel Android-SDk Android-NDK
Resumo:
Two complementary wireless sensor nodes for building two-tiered heterogeneous networks are presented. A larger node with a 25 mm by 25 mm size acts as the backbone of the network, and can handle complex data processing. A smaller, cheaper node with a 10 mm by 10 mm size can perform simpler sensor-interfacing tasks. The 25mm node is based on previous work that has been done in the Tyndall National Institute that created a modular wireless sensor node. In this work, a new 25mm module is developed operating in the 433/868 MHz frequency bands, with a range of 3.8 km. The 10mm node is highly miniaturised, while retaining a high level of modularity. It has been designed to support very energy efficient operation for applications with low duty cycles, with a sleep current of 3.3 μA. Both nodes use commercially available components and have low manufacturing costs to allow the construction of large networks. In addition, interface boards for communicating with nodes have been developed for both the 25mm and 10mm nodes. These interface boards provide a USB connection, and support recharging of a Li-ion battery from the USB power supply. This paper discusses the design goals, the design methods, and the resulting implementation.
Resumo:
In this paper, The radio Frequency (RF) Monitoring and Measurement of the Environmental Research Institute (ERI) located in Cork city will be monitored and analyzed in both the Zigbee (2.44 GHz) and the industrial, scientific and medical (ISM 433 MHz). The main objective of this survey is to confirm what the noise and interferences threat signals exist in these bands. It was agreed that the surveys would be carried out in 5 different rooms and areas that are candidates for the Wireless Sensors deployments. Based on the carried on study, A Zigbee standard Wireless Sensor Network (WSN) will be developed employing a number of motes for sensing number of signals like temperature, light and humidity beside the RSSI and battery voltage monitoring. Such system will be used later on to control and improve indoor building climate at reduced costs, remove the need for cabling and both installation and operational costs are significantly reduced.
Resumo:
For many wireless sensor networks applications, indoor light energy is the only ambient energy source commonly available. Many advantages and constraints co-exist in this technology. However, relatively few indoor light powered harvesters have been presented and much research remains to be carried out on a variety of related design considerations and trade-offs. This work presents a solution using the Tyndall mote and an indoor light powered wireless sensor node. It analyses design considerations on several issues such as indoor light characteristics, solar panel component choice, maximum power point tracking, energy storage elements and the trade-offs and choices between them.
Resumo:
In this paper, a wireless sensor network mote hardware design and implementation are introduced for building deployment application. The core of the mote design is based on the 8 bit AVR microcontroller, Atmega1281 and 2.4 GHz wireless communication chip, CC2420. The module PCB fabrication is using the stackable technology providing powerful configuration capability. Three main layers of size 25 mm2 are structured to form the mote; these are RF, sensor and power layers. The sensors were selected carefully to meet both the building monitoring and design requirements. Beside the sensing capability, actuation and interfacing to external meters/sensors are provided to perform different management control and data recording tasks. Experiments show that the developed mote works effectively in giving stable data acquisition and owns good communication and power performance.
Resumo:
This work considers the effect of hardware constraints that typically arise in practical power-aware wireless sensor network systems. A rigorous methodology is presented that quantifies the effect of output power limit and quantization constraints on bit error rate performance. The approach uses a novel, intuitively appealing means of addressing the output power constraint, wherein the attendant saturation block is mapped from the output of the plant to its input and compensation is then achieved using a robust anti-windup scheme. A priori levels of system performance are attained using a quantitative feedback theory approach on the initial, linear stage of the design paradigm. This hybrid design is assessed experimentally using a fully compliant 802.15.4 testbed where mobility is introduced through the use of autonomous robots. A benchmark comparison between the new approach and a number of existing strategies is also presented.
Resumo:
Embedded wireless sensor network (WSN) systems have been developed and used in a wide variety of applications such as local automatic environmental monitoring; medical applications analysing aspects of fitness and health energy metering and management in the built environment as well as traffic pattern analysis and control applications. While the purpose and functions of embedded wireless sensor networks have a myriad of applications and possibilities in the future, a particular implementation of these ambient sensors is in the area of wearable electronics incorporated into body area networks and everyday garments. Some of these systems will incorporate inertial sensing devices and other physical and physiological sensors with a particular focus on the application areas of athlete performance monitoring and e-health. Some of the important physical requirements for wearable antennas are that they are light-weight, small and robust and should also use materials that are compatible with a standard manufacturing process such as flexible polyimide or fr4 material where low cost consumer market oriented products are being produced. The substrate material is required to be low loss and flexible and often necessitates the use of thin dielectric and metallization layers. This paper describes the development of such a wearable, flexible antenna system for ISM band wearable wireless sensor networks. The material selected for the development of the wearable system in question is DE104i characterized by a dielectric constant of 3.8 and a loss tangent of 0.02. The antenna feed line is a 50 Ohm microstrip topology suitable for use with standard, high-performance and low-cost SMA-type RF connector technologies, widely used for these types of applications. The desired centre frequency is aimed at the 2.4GHz ISM band to be compatible with IEEE 802.15.4 Zigbee communication protocols and the Bluetooth standard which operate in this band.
Resumo:
A wearable WIMU (Wireless Inertial Measurement Unit) [1] system for sports applications based on Tyndall's 25mm mote technology [2] has been developed to identify tennis performance determining factors, giving coaches & players improved feedback [3, 4]. Multiple WIMUs transmit player motion data to a PC/laptop via a receiver unit. Internally the WIMUs consist of: an IMU layer with MEMS based sensors; a microcontroller/transceiver layer; and an interconnect layer with supplemental 70g accelerometers and a lithium-ion battery. Packaging consists of a robust ABS plastic case with internal padding, a power switch, battery charging port and status LED with Velcro-elastic straps that are used to attach the device to the player. This offers protection from impact, sweat, and movement of sensors which could cause degradation in device performance. In addition, an important requirement for this device is that it needs to be lightweight and comfortable to wear. Calibration ensures that misalignment of the accelerometer and magnetometer axes are accounted for, allowing more accurate measurements to be made.
Resumo:
The goal of this work is to fabricate robust, highly-miniaturised, wireless sensor modules that incorporates ion-selective electrodes (ISEs). pH is one of the main parameters in assessment of the quality of our environment (water, soil) and these ISE/pH sensors will be deployed in a miniaturised, programmable modular system. The simplicity of ISEs (low costs and low power requirements) allow for the preparation of sensors that are all very similar in construction but can at the same time be easily made for variety of different environmentally important ions (i.e. heavy metals). This is important because of the increasing focus on the impact of the quality of the environment on society, both locally, and globally. The work described will contribute to a widely distributed sensor network for monitoring the quality of our environment, focused mainly on soil and water quality.
Resumo:
Advanced sensory systems address a number of major obstacles towards the provision for cost effective and proactive rehabilitation. Many of these systems employ technologies such as high-speed video or motion capture to generate quantitative measurements. However these solutions are accompanied by some major limitations including extensive set-up and calibration, restriction to indoor use, high cost and time consuming data analysis. Additionally many do not quantify improvement in a rigorous manner for example gait analysis for 5 minutes as opposed to 24 hour ambulatory monitoring. This work addresses these limitations using low cost, wearable wireless inertial measurement as a mobile and minimal infrastructure alternative. In cooperation with healthcare professionals the goal is to design and implement a reconfigurable and intelligent movement capture system. A key component of this work is an extensive benchmark comparison with the 'gold standard' VICON motion capture system.
Resumo:
A comparison study was carried out between a wireless sensor node with a bare die flip-chip mounted and its reference board with a BGA packaged transceiver chip. The main focus is the return loss (S parameter S11) at the antenna connector, which was highly depended on the impedance mismatch. Modeling including the different interconnect technologies, substrate properties and passive components, was performed to simulate the system in Ansoft Designer software. Statistical methods, such as the use of standard derivation and regression, were applied to the RF performance analysis, to see the impacts of the different parameters on the return loss. Extreme value search, following on the previous analysis, can provide the parameters' values for the minimum return loss. Measurements fit the analysis and simulation well and showed a great improvement of the return loss from -5dB to -25dB for the target wireless sensor node.
Design and implementation of the embedded capacitance layers for decoupling of wireless sensor nodes
Resumo:
In this paper, the embedded capacitance material (ECM) is fabricated between the power and ground layers of the wireless sensor nodes, forming an integrated capacitance to replace the large amount of decoupling capacitors on the board. The ECM material, whose dielectric constant is 16, has the same size of the wireless sensor nodes of 3cm*3cm, with a thickness of only 14μm. Though the capacitance of a single ECM layer being only around 8nF, there are two reasons the ECM layers can still replace the high frequency decoupling capacitors (100nF in our case) on the board. The first reason is: the parasitic inductance of the ECM layer is much lower than the surface mount capacitors'. A smaller capacitance value of the ECM layer could achieve the same resonant frequency of the surface mount decoupling capacitors. Simulation and measurement fit this assumption well. The second reason is: more than one layer of ECM material are utilized during the design step to get a parallel connection of the several ECM capacitance layers, finally leading to a larger value of the capacitance and smaller value of parasitic. Characterization of the ECM is carried out by the LCR meter. To evaluate the behaviors of the ECM layer, time and frequency domain measurements are performed on the power-bus decoupling of the wireless sensor nodes. Comparison with the measurements of bare PCB board and decoupling capacitors solution are provided to show the improvement of the ECM layer. Measurements show that the implementation of the ECM layer can not only save the space of the surface mount decoupling capacitors, but also provide better power-bus decoupling to the nodes.
Resumo:
Science Foundation Ireland (CSET - Centre for Science, Engineering and Technology, grant 07/CE/I1147)
Resumo:
This work performs an extensive charterisation of precision targeted throwing in professional and recreational darts. The goal is to identify the contributing factors for lateral drift or throwing inaccuracy in the horizontal plane. A multitechnology approach is adopted whereby a custom built body area network of wireless inertial measurement devices monitor tilt, force and timing, an optical 3D motion capture system provides a complete kinematic model of the subject, electromyography sensors monitor muscle activation patterns and a force plate and pressure mat capture tactile pressure and force measurements. The study introduces the concept of constant throwing rhythm and highlights how landing errors in the horizontal plane can be attributable to a number of variations in arm force and speed, centre of gravity and the movements of some of the bodies non throw related extremities.
Resumo:
Science Foundation Ireland (07/CE/11147); Irish Research Council for Science Engineering and Technology (Embark Initiative)
Resumo:
Traditional motion capture techniques, for instance, those employing optical technology, have long been used in the area of rehabilitation, sports medicine and performance analysis, where accurately capturing bio-mechanical data is of crucial importance. However their size, cost, complexity and lack of portability mean that their use is often impractical. Low cost MEMS inertial sensors when combined and assembled into a Wireless Inertial Measurement Unit (WIMU) present a possible solution for low cost and highly portable motion capture. However due to the large variability inherent to MEMS sensors, such a system would need extensive characterization to calibrate each sensor and ensure good quality data capture. A completely calibrated WIMU system would allow for motion capture in a wider range of real-world, non-laboratory based applications. Calibration can be a complex task, particularly for newer, multi-sensing range capable inertial sensors. As such we present an automated system for quickly and easily calibrating inertial sensors in a packaged WIMU, demonstrating some of the improvements in accuracy attainable.