970 resultados para Ammonium aminofluoride
Resumo:
High-solids, low-viscosity, stable poly(acrylamide-co-acrylic acid) aqueous latex dispersions were prepared by the dispersion polymerization of acrylamide (AM) and acrylic acid (AA) in an aqueous solution of ammonium sulfate (AS) medium using anionic polyelectrolytes as stabilizers. The anionic polyelectrolytes employed include poly(2-acrylamido-2-methylpropanesulfonic acid sodium) (PAMPSNa) homopolymer and random copolymers of 2-acrylamido-2-methylpropanesulfonic acid sodium (AMPSNa) with methacrylic acid sodium (MAANa), acrylic acid sodium (AANa) or acrylamide (AM). The influences of stabilizer's structure, composition, molecular weight and concentration, AA/AM molar feed ratio, total monomer, initiator and aqueous solution of AS concentration, and stirring speed on the monomer conversion, the particle size and distribution, the bulk viscosity and stability of the dispersions, and the intrinsic viscosity of the resulting copolymer were systematically investigated. Polydisperse spherical as well as ellipsoidal particles were formed in the system. The broad particle size distributions indicated that coalescence of the particles takes place to a greater extent.
Resumo:
Poly (aniline-co-anthranilic acid) (PANANA) nanorods in bundles was prepared successfully in an alcohol/aqueous media without assistance of an), other kinds of acids. Anthranilic acid played all roles of monomer, acid-media provider, and dopant in the reaction system, and ammonium persulfate (APS) served as the oxidant. The morphologies of PANANA nanorods in bundles were investigated by scanning electron microscopy (SEM). Influences of the monomer molar ratio on the resulting morphology were investigated. Moreover the formation mechanism of the nanostructured copolymer was proposed. FT-IR. UV-vis and X-ray diffraction (XRD) measurements were used to confirm the molecular and electrical structure of the self-doped PANANA. The intrinsic properties, such as conductivity, electrochemical redox activity and room-temperature solubility of the resulting copolymer were explored.
Resumo:
The degradation and flame retardancy of polypropylene/organically modified montmorillonite (PP/OMMT) nanocomposite were studied by means of gas chromatography-mass spectrometry and cone calorimeter. The catalysis of hydrogen proton containing montmorillonite (H-MMT) derived from thermal decomposition of (alkyl) ammonium in the OMMT on degradation of PP strongly influence carbonization behavior of PP and then flame retardancy. Bronsted acid sites on the H-MMT could catalyze degradation reaction of PP via cationic mechanism, which leads to the formation of char during combustion of PP via hydride transfer reaction. A continuous carbonaceous MMT-rich char on the surface of the burned residues, which work as a protective barrier to heat and mass transfer, results from the homogeneous dispersion of OMMT in the PP matrix and appropriate char produced.
Resumo:
The monolayer of the mixture of octadecanoic acid and octadecylamine with molar ratio 1: 1 has been investigated at the air-water interface. It was found that the monolayer shows a rather stable state at the surface pressure of 30 mN/m and this monolayer can be transferred onto a CaF2 plate by Langmuir-Blodgett (LB) technique. The infrared spectra of LB films indicated that octadecyl ammonium octadecanoate is formed by an intermolecular proton exchange between adjacent carboxylic and aminic groups (COO- and NH3+). In three-layer LB film, the CH2 scissoring mode of the long hydrocarbon chains of octadecyl ammonium octadecanoate shows a broad band feature at about 1468 cm(-1) while this vibrational mode of three-layer LB film of the mixture (1: 1) of deuterated stearic acid and octadecylamine (octadecylammonium octadecanoate-d35, C18H37NH3+C17D35COO-) only shows a narrow band. The broad feature of the CH2 scissoring mode in octadecylammonium octadecanoate probably originates from the coupling between the chain of stearic acid and that of octadecylamine while this kind of coupling could be completely removed in octadecylammonium octadecanoate-d35.
Resumo:
Polymer-clay nanocomposite (PCN) materials were prepared by intercalation of an alkyl-ammonium ion spacing/coupling agent and a polymer between the planar layers of a swellable-layered material, such as montmorillonite (MMT). The nanocomposite lithium polymer electrolytes comprising such PCN materials and/or a dielectric solution (propylene carbonate) were prepared and discussed. The chemical composition of the nanocomposite materials was determined with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy, which revealed that the alkyl-ammonium ion successfully intercalated the layer of MMT clay, and thus copolymer poly(vinylidene fluoride-hexafluoropropylene) entered the galleries of montmorillonite clay. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) were used to investigate the electrochemical properties of the lithium polymer electrolyte. Equivalent circuits were proposed to fit the EIS data successfully, and the significant contribution from MMT was thus identified. The resulting polymer electrolytes show high ionic conductivity up to 10(-3) S cm(-1) after felling with propylene carbonate.
Resumo:
A novel 3D supramolecular assembly constructed from decavanadate and caffeine building blocks, (NH4)(2)(C8H10N4O2)(4)[H4V10O28].2H(2)O (1), has been synthesized in aqueous solution and characterized by elemental analysis, IR, H-1 NMR, V-51 NMR, TG-DTA, and single crystal X-Ray diffraction. The compound 1 crystallizes in monoclinic system, space group P2(1)/n, a = 15.801(1) Angstrom, b = 12.914(1) Angstrom, c = 15.913(2) Angstrom, beta = 113.55degrees, V = 2976.4 (5) Angstrom(3), Z = 2, R = 0.0498 with 6818 reflections. Water molecules, ammonium ions, and caffeine act as "cement" linking the polyanions into 1D chain along the c-axis by hydrogen bonding. In compound 1, extensive hydrogen-bond contacts and strong pi-pi interactions lead to an ordered 3D supramolecular framework. TG-DTA curves indicate that the weight loss of the complex can be divided into three stages.
Resumo:
Ordered hexagonal mesoporous silica material (JLU-30) has been successfully synthesized in alkaline media at high temperature (> 160 degreesC, using cationic (1,3-dimethyl-2-imidazolidin-2-ylidene)hexadecylmethyl-ammonium bromide (DIHAB) as a template, and characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen adsorption-desorption isotherms, differential thermal analysis (DTA), and thermogravimetric analysis (TG), as well as Al-27 and Si-29 nuclear magnetic resonance (NMR) spectroscopy. Mesoporous JLU-30 shows much higher hydrothermal stability than MCM-41. Si-29 NMR spectra indicate that the pore walls of JLU-30 samples synthesized at high temperature (160 degreesC) are fully condensed, giving a Q(4)/Q(3) ratio as high as 6.2. In contrast, MCM-41 synthesized at relatively low temperature (100 degreesC) shows the Q(4)/Q(3) + Q(2) ratio at 1.1. Such unique structural feature might be responsible for the observed highly hydrothermal stability of the mesoporous silica materials (JLU-30).
Resumo:
Polysaccharide produced by mutated strain of Streptococcus zooepidemicus was purified by the procedures including Savage method, quaternary ammonium compound precipitation, DEAE-cellulose(DE52) chromatography and Sephadex G-75 gel filtration. The structure of the purified polysaccharide has been characterized by means of chemical composition analysis, C-13 NMR spectrum, infrared spectrum and circular dichroism (CD). All the results showed that the purified polysaccharide was hyaluronic acid (HA). The single helix conformation of the purified HA was determined by Congo red experiment. The molecular weight of the HA was about 1.16x10(6)D, which was measured by viscosity method.
Resumo:
Erbium-doped BaF2 nanoparticles were prepared from the microemulsion of cetyl trimethyl ammonium bromide (CTAB), n-butanol, n-octane and water. The X-ray diffraction (XRD) patterns were indexed to a pure BaF2 cubic phase. Transmission electron microscopy (TEM) images showed that BaF2 products were monodispersed with 15-20 nm in size at the dopant concentration of 0.06 mol%. At higher dopant concentration, there was no significant increase in particle size, but more polydispersed. Photoluminescence (PL) properties of the final products were examined. We can observe fluorescence of Er3+ around 1540 nm and with the increase of dopant concentration, the fluorescent intensity increases.
Resumo:
BaF2 nanocubes were prepared from quaternary reverse micelles of cetyl trimethyl ammonium bromide (CTAB), n-butanol, n-octane, and water. Interestingly, there are arching sheet-like dendrites growing between two neighbouring sides of these cubes. X-ray powder diffraction (XRD) analysis showed that the products were BaF2 single phase. Scanning electron microscopy (SEM) or transition electron microscopy (TEM) was used to estimate the size of the final products. The results showed that the shape and size of particles were strongly dependent on the reaction conditions, such as the temperature and reaction time. When the reaction temperature was 25 degreesC, we obtained cuboid-like particles with 'clean' surfaces (no dendrites growing on them), and when the temperature was 35 degreesC, we obtained nanocubes with dendrites growing from them between the neighbouring sides. The influence of reaction time at a temperature of 35 degreesC is also discussed.
Resumo:
Europium-doped barium fluoride cubic nanocolumns were synthesized from the quaternary water in oil reverse microemulsions In this process, the aqueous cores of water/cetyl trimethyl ammonium bromide (CTAB)/n-butanol/n-octane reverse microemulsions were used as microreactors for the precipitation of europium doped barium fluoride. XRD analysis shows that under the dopant concentration of 0.06% (molar fraction), the products are single phase. The result products are cubic column-like with about 30 similar to 50 nm edge length of cross section, and about 200 nm of length obtained from the transmission electron microscopy (TEM), and atomic force microscopy (AFM). Under the 0.06 % (molar fraction) of dopant concentration I the fluorescence of Eu2+ and Eu3+ under the 589 of excitation wavelength is observed.
Resumo:
Poly(diallyl dimethylammonium) chloride (PDDA), an ordinary and watersoluble, cationic polyelectrolyte, was investigated for its ability to generate and stabilize gold colloids from a chloroauric acid precursor. In this reaction, PDDA acted as both reducing and stabilizing agents for gold nanoparticles (AuNPs). More importantly, PDDA is a quaternary ammonium polyelectrolyte, which shows that the scope of the reducing and stabilizing agents for metal nanoparticles can be extended from the amine-containing molecules to quaternary ammonium polyelectrolytes or salts. UV-vis spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and Fourier transform infrared (FTIR) were used to characterize the synthetic AuNPs. The PDDA-protected AuNPs obtained are very stable and have relative narrow size distribution.
Resumo:
Supported nickel catalyst (Ni-Cat) was used as a catalyst to improve the flame retarclancy of intumescent flame-retardants (IFR) systems based on ammonium polyphosphate and pentaerythritol (PETOL) in polypropylene (PP) matrix. Limited oxygen index (LOI), UL-94 rating, and thermogravimetric analysis were used to characterize the flame retardancy and thermal stability of the PP systems, and field emission scanning electron microscopy (FE-SEM) and Fourier transformed infrared spectroscopy (FTIR) were used to analyze the microstructure and composition of the chars formed during measuring LOI value and after combustion at 800 degrees C. The catalytic effect of NiCat was shown in an increase of LOI, a change in the char microstructure, and improvement of the thermal stability in the PP systems, which result from the synergistic effect of Ni-Cat and IFR. The results from FE-SEM and FTIR spectra of the char can explain how this synergistic effect happened.
Resumo:
The phase diagram of a cetyltrimethyl ammonium bromide( CTAB)/n-butanol/n-octane/KNO3-Mg( NO3)(2) system was drawn. Nanoparticles of Eu2+-doped KMgF3 were prepared from the quaternary microemulsions of cetyltrimethyl ammonium bromide(CTAB), n-butanol, n-octane and water. The X-ray diffraction(XRD) patterns were indexed to a pure KMgF3 cubic phase. The environmental scanning electron microscopic (ESEM) images show the presence of spherical Eu2+-doped KMgF3 nanoparticles with a diameter of ca. 20 nm. The emission of KMgF3: Eu2+ nanoparticles peaks at 360 mn. The excitation band was observed at 250 nm with a blue shift of ca. 70 nm compared with that of KMgF3: Eu2+ single crystal. The preparation method of nano-KMgF3: Eu2+/PMMA composite films was inquired into.