981 resultados para Amazonian craton


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 146Sm–142Nd system plays a central role in tracing the silicate differentiation of the Earth prior to 4.1 Ga. After this time, given its initial abundance, the 146Sm can be considered to be extinct. Upadhyay et al. (2009) reported unexpected negative 142Nd anomalies in 1.48 Ga rocks of the Khariar nepheline syenite complex (India) and inferred that an early enriched, low-Sm/Nd reservoir must have contributed to the mantle source rocks of the Khariar complex. As 146Sm had been effectively extinct for about 2.6 billion years before the crystallisation of the Khariar samples, this Nd signature should have remained isolated from the convective mantle for at least that long. It was thus suggested that the source rock of Khariar samples had been sequestered in the lithospheric root of the Indian craton. Using a different chemical separation method, and a different Thermal Ionization Mass Spectrometry (TIMS) analysis protocol, the present study attempted to replicate these negative 142Nd anomalies, but none were found. To determine which data set is correct, we investigated three possible sources of bias between them: imperfect cancellation of Faraday collector efficiencies during multidynamic TIMS analysis, rapid sample fractionation between the sequential measurement of 146Nd/144Nd and 142Nd/144Nd, and non-exponential law behaviour resulting from so-called “domain mixing.” Incomplete cancellation of collector efficiencies was found unlikely to cause resolvable biases at the estimated level of variation among collector efficiencies. Even in the case of highly variable efficiency and resolvable biases, there is no reason to suspect that they would reproducibly affect only four rocks out of 10 analysed by Upadhyay et al. (2009). Although domain mixing may explain apparent “reverse” fractionation trends observed in some TIMS analyses, it cannot be the cause of the apparent negative anomalies in the study of Upadhyay et al. (2009). It was determined that rapid mass fractionation during the course of a multidynamic TIMS analysis can bias all measured Nd ratios. After applying an approximate correction for this effect, only one rock from Upadhyay et al. (2009) retained an apparent negative 142Nd anomaly. This, in conjunction with our new, anomaly-free data set measured at fractionation rates too low to cause bias, leads to the conclusion that the anomalies reported by Upadhyay et al. (2009) are a subtle and reproducible analytical artefact. The absence of negative 142Nd anomalies in these rocks relaxes the need for a mechanism (other than crust formation) that can isolate a Nd reservoir from the convective mantle for billions of years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hellas basin is a large impact basin situated in the southern highlands of Mars. The north-western part of the basin has the lowest elevation (-7.5 km) on the planet and contains a possibly unique terrain type, which we informally call “banded terrain”. The banded terrain is made up of smooth-looking banded deposits that display signs of viscous behavior and a paucity of superimposed impact craters. In this study, we use newly acquired high spatial resolution images from the High Resolution Imaging Science Experiment (HiRISE) in addition to existing datasets to characterize the geomorphology, the morphometry and the architecture of the banded terrain. The banded terrain is generally confined to the NW edge of the Alpheus Colles plateau. The individual bands are ~3–15 km-long, ~0.3 km-wide and are separated by narrow inter-band depressions, which are ~65 m-wide and ~10 m-deep. The bands display several morphologies that vary from linear to concentric forms. Morphometric analysis reveals that the slopes along a given linear or lobate band ranges from 0.5° to 15° (average~6°), whereas the concentric bands are located on flatter terrain (average slope~2–3°). Crater-size frequency analysis yields an Amazonian-Hesperian boundary crater retention age for the terrain (~3 Gyr), which together, with the presence of very few degraded craters, either implies a recent emplacement, resurfacing, or intense erosion. The apparent sensitivity to local topography and preference for concentrating in localized depressions is compatible with deformation as a viscous fluid. In addition, the bands display clear signs of degradation and slumping at their margins along with a suite of other features that include fractured mounds, polygonal cracks at variable size-scales, and knobby/hummocky textures. Together, these features suggest an ice-rich composition for at least the upper layers of the terrain, which is currently being heavily modified through loss of ice and intense weathering, possibly by wind.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemical compositions and crystal structures of Mn3+-containing minerals from the epidote group in Greenland rocks are investigated and described in detail. They occur in hydrothermally altered Archaean mafic sequences within the gneissic complex of the North Atlantic craton of West Greenland. The Mn-containing minerals have a characteristic red to pink colour. A detailed microchemical study shows a significant inter- and intra-sample variation in Mn content. The samples from different parageneses can be classified as Mn-bearing epidote and Mn-bearing clinozoisite. The intra-sample variation in the content of Al, Fe and Mn is on a very fine scale, but still allows for identification of a negative correlation between Mn and Fe. Textures indicate different stages of growth. Crystal chemical data are compared with literature data and illustrate the basic systematic differences between the influence of Fe and Mn on the crystal structure of the epidote group minerals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paleogeographic reconstructions of India and Madagascar before their late Cretaceous rifting juxtapose the Antongil Block of Madagascar against the Deccan Traps of India, indicating that the Western Dharwar Craton extends below the Deccan lavas. Some recent studies have suggested that the South Maharashtra Shear Zone along the northern Konkan coast of India limits the northern extent of the Western Dharwar Craton, implying that the craton does not extend below the Deccan Traps, raising a question mark on paleogeographic reconstructions of India and Madagascar. The continuity of the Western Dharwar Craton north of the South Maharashtra Shear Zone below the Deccan Traps—or its lack thereof—is critical for validating tectonic models correlating Madagascar with India. In this study, zircons in tonalitic basement xenoliths hosted in Deccan Trap dykes were dated in situ, using the U-Pb isotope system. The data furnish U-Pb ages that define three populations at 2527 ± 6, 2456 ± 6, and 2379 ± 9 Ma. The 2527 ± 6 Ma ages correspond to the igneous crystallization of the tonalites, whereas the 2456 ± 6 and 2379 ± 9 Ma ages date metamorphic overprints. The results help to establish for the first time that the basement is a part of the Neoarchean granitoid suite of the Western Dharwar Craton, which extends northward up to at least Talvade in central and Kihim beach in the western Deccan. By implication, the South Maharashtra Shear Zone cannot be the northern limit of the Western Dharwar Craton. The granitoids are correlated with the Neoarchean felsic intrusions (2.57–2.49) of the Masaola suite in the Antongil Block of Madagascar, supporting the existence of a Neoarchean Greater Dharwar Craton comprising the Western Dharwar Craton and the Antongil-Masora Block.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The discussions on the orogenic evolution during Earth's history converge to the question of a different thermal structure in the Archean compared to the Phanerozoic and the applicability of the plate tectonic paradigm. However, geothermal structures are transient in orogens and are difficult to translate into large-scale tectonics and exhumation rates. Therefore, we propose depth–time data in the Archean Skjoldungen Orogen (SE Greenland, North Atlantic Craton) that allow for reconstruction of an exhumation rate independent of geothermal gradients. The resulting exhumation rate of ca. 0.4 km/Ma is similar to exhumation rates during erosion-controlled processes in modern orogens. These exhumation rates can only be established by erosion time constants similar to modern orogens. The occurrence of erosion-controlled exhumation is best explained by a stiff foreland promoting localized deformation in the orogen. Therefore, a switch from magmatic-dominated processes to localized deformation is proposed in the Skjoldungen Orogen area. This is supported by a change in magma composition and volume, from widespread granodiorite to localized alkaline intrusions. In addition, the involved metasedimentary rocks include detrital zircons of the only 50 Ma older foreland, which also correspond to erosion and tectonics as in modern orogens, i.e. flysh-type sediments. Relatively fast exhumation rates and the structural-magmatic evolution of the Neoarchean Skjoldungen Orogen thus indicate modern-style tectonic processes where stiff Mesoarchean continental crust forms a foreland to a collisional orogen instead of typical accretionary tectonics of weak island arc-like terranes in granite-greenstone terranes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1 Light availability may be crucial for understanding dynamics of plant–herbivore interactions in temperate and tropical forest communities. This is because local light availability can influence both tree seedling tolerance and susceptibility to herbivory – yet how they mediate levels of insect herbivory that vary with the density of host population is virtually unknown. Here we tested predictions of three key, non-mutually exclusive hypotheses of plant–herbivore interactions: the Limiting Resource Model (LRM), the Plant Vigour Hypothesis (PVH), and the Janzen-Connell Mechanism (JCM). 2 In an Amazonian forest, we planted Swietenia macrophylla seedlings (c. 5 months old) into natural canopy gaps and the shaded understorey and simulated the damage patterns of the specialist herbivore moth, Steniscadia poliophaea, by clipping seedling leaves. Over the next 8 months, we monitored seedling performance in terms of growth and survivorship and also quantified herbivory to new young leaves on a seasonal basis. 3 In support of the LRM, severe leaf damage (≥ 50%) was lethal for Swietenia macrophylla seedlings in the understorey, but in gaps only reduced seedling growth. In support of the PVH, gap seedlings suffered greater post-simulated herbivory (up to 100% defoliation) by S. poliophaea caterpillars than their understorey counterparts. 4 Adding a novel dimension to the Janzen–Connell hypothesis, we found that early wet season herbivory of seedlings in gaps increased with conspecific adult density within a 125-m radius; whereas in the understorey only those seedlings within 50 m of a Swietenia tree were attacked by caterpillars. 5 Synthesis. These results suggest lepidopterans that need young leaves for food may forage more widely in forests to find seedlings in light-rich canopy gaps. Moths may achieve this successfully by being first attracted to gaps, and then searching within them for suitable hosts. A conceptual model, integrating conspecific adult tree density with light-driven changes in seedling tolerance/vigour and their susceptibility to herbivory and mortality, is presented. Spatial variation in the light available to tree seedlings often affects their tolerance and vigour, which may have important consequences for leaf-chewing insects and the scale of density-dependent herbivory in forests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amawaka ([ɑmɨ̃ˈwɐkɑ]) is a highly endangered and underdocumented tonal language of the Headwaters (Fleck 2011) subgroup of the Panoan family in the Southwest Amazon Basin, spoken by approximately 200 people. Undocumented phonetic and phonological phenomena of Amawaka include its tonal structure, both in terms of surface realizations and the patterns underlying these realizations. Original audiovisual data from the author’s fieldwork in various Amawaka communities at the Peru-Brazil border will illuminate the as-yet obscure tonal systematicity of the language. Unlike other elements, monosyllabic bimoraic phonological nominal words with long vowels display variation in their surface realization. All the words with the open back unrounded /ɑ/, like /ˈkɑ̀:/ (patarashca, a traditional Amazonian dish), /ˈnɑ̀:/ “mestizo” etc. [with the exception of /ˈtɑ:/ “reed”, which surfaces with either a H or L tone] bear a low tone in isolation. This realization contrasts with all the encountered nominal monosyllables with vowels from the close and close-mid front and central spectrum /i, ɘ, ɨ, ɨ̃/, which clearly surface as high tone words in isolation, for example /ˈmɨ̃́:/ (a clay-lick for animals), /ˈwí:/ “Anopheles, spp. mosquito”. Monosyllables with close-mid back rounded /o/ have a less restrictive pitch that varies among speakers from low to high realizations, and sometimes even across the speech tokens from an individual speaker, e.g. /wó:/ or /wō:/ “hair”, /ɧō:/ or /ɧò:/ (a type of tarantula). Phrasal tonal phonology is more complex, when these three kinds of monosyllables appear in larger noun phrases. Some retain the same surface tones as their isolation form, while others seem to vary freely in their surface realization, e.g. /ˈtɘ́:.nɑ̀:/ or /ˈtɘ́:.nɑ́:/ ‘one mestizo’. Yet other monosyllables, e.g. /mɑ̀:/, exhibit a falling tone when preceded by a H syllable, suggesting probably latent tone sandhi phenomena, e.g /ˈtɘ́:.mɑ̂:/ (one clay-lick for parrots). In disyllabic, trisyllabic and quadrisyllabic nouns, tonal and stress patterns generally seem to be more consistent and tend to be retained both in isolation and in larger intonational phrases. Disyllabic nouns, for instance, surface as L-H or L-L when a glottal stop is in coda position. The association of L with a glottal stop is a feature that occurs in other Panoan languages as well, like Capanahua (Loos 1969), and more generally it is an areal feature, found in other parts of Amazonia (Hyman 2010). So, tone has significant interactions with the glottal stop and glottalization, which generally co-occurs with L. The data above suggest that the underlying tonal system of Amawaka is much more complex than the privative one-tone analysis (/H/ vs. Ø, i.e. lack of tone) that was proposed by Russell and Russell (1959). Evidence from field data suggests either an equipollent (Hyman 2010) two-tone opposition between /H/ and /L/, or a hybrid system, with both equipollent and privative features; that is, /H/ vs. /L/ vs. either Ø or /M/. This first systematic description of Amawaka tone, in conjunction with ongoing research, is poised to address broader questions concerning interrelationships between surface/underlying tone and other suprasegmental features, such as nasality, metrical stress, and intonation. References Fleck, David W. 2011. Panoan languages and linguistics. In Javier Ruedas and David W. Fleck (Eds.), Panoan Histories and Interethnic Identities, To appear. Hyman, Larry. 2010. Amazonia and the typology of tone systems. Presented at the conference Amazonicas III: The structure of the Amazonian languages. Bogotá. Loos, Eugene E. 1969. The phonology of Capanahua and its grammatical basis. Norman: SIL and U. Oklahoma. Russell, Robert & Dolores. 1959. Syntactotonemics in Amahuaca (Pano). Série Lingüistica Especial, 128-167. Publicaçoes do Museu Nacional, Rio de Janeiro, Brasil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amawaka ([ɑmɨ̃ˈwɐkɑ]) is a highly endangered and underdocumented tonal language of the Headwaters (Fleck 2011) subgroup of the Panoan family in the Southwest Amazon Basin, spoken by approximately 200 people. Undocumented phonetic and phonological phenomena of Amawaka include its tonal structure, both in terms of surface realizations and the patterns underlying these realizations. Original audiovisual data from the author’s fieldwork in various Amawaka communities at the Peru-Brazil border will illuminate the as-yet obscure tonal systematicity of the language. Unlike other elements, monosyllabic bimoraic phonological nominal words with long vowels display variation in their surface realization. All the words with the open back unrounded /ɑ/, like /ˈkɑ̀:/ (a traditional Amazonian dish), /ˈnɑ̀:/ “mestizo” etc. [with the exception of /ˈtɑ:/ “reed”, which surfaces with either a H or L tone] bear a low tone in isolation. This realization contrasts with all the encountered nominal monosyllables with vowels from the close and close-mid front and central spectrum /i, ɘ, ɨ, ɨ̃/, which clearly surface as high tone words in isolation, for example /ˈmɨ̃́:/ (a clay-lick for animals), /ˈwí:/ “Anopheles, spp. mosquito”. Monosyllables with close-mid back rounded /o/ have a less restrictive pitch that varies among speakers from low to high realizations, and sometimes even across the speech tokens from an individual speaker, e.g. /wó:/ or /wō:/ “hair”, /ɧō:/ or /ɧò:/ (a type of tarantula). Phrasal tonal phonology is more complex, when these three kinds of monosyllables appear in larger noun phrases. Some retain the same surface tones as their isolation form, while others seem to vary freely in their surface realization, e.g. /ˈtɘ́:.nɑ̀:/ or /ˈtɘ́:.nɑ́:/ ‘one mestizo’. Yet other monosyllables, e.g. /mɑ̀:/, exhibit a falling tone when preceded by a H syllable, suggesting probably latent tone sandhi phenomena, e.g /ˈtɘ́:.mɑ̂:/ (one clay-lick for parrots). In disyllabic, trisyllabic and quadrisyllabic nouns, tonal and stress patterns generally seem to be more consistent and tend to be retained both in isolation and in larger intonational phrases. Disyllabic nouns, for instance, surface as L-H or L-L when a glottal stop is in coda position. The association of L with a glottal stop is a feature that occurs in other Panoan languages as well, like Capanahua (Loos 1969), and more generally it is an areal feature, found in other parts of Amazonia (Hyman 2010). So, tone has significant interactions with the glottal stop and glottalization, which generally co-occurs with L. The data above suggest that the underlying tonal system of Amawaka is much more complex than the privative one-tone analysis (/H/ vs. Ø, i.e. lack of tone) that was proposed by Russell and Russell (1959). Evidence from field data suggests either an equipollent (Hyman 2010) two-tone opposition between /H/ and /L/, or a hybrid system, with both equipollent and privative features; that is, /H/ vs. /L/ vs. either Ø or /M/. This first systematic description of Amawaka tone, in conjunction with ongoing research, is poised to address broader questions concerning interrelationships between surface/underlying tone and other suprasegmental features, such as nasality, metrical stress, and intonation. References Fleck, David W. 2011. Panoan languages and linguistics. In Javier Ruedas and David W. Fleck (Eds.), Panoan Histories and Interethnic Identities, To appear. Hyman, Larry. 2010. Amazonia and the typology of tone systems. Presented at the conference Amazonicas III: The structure of the Amazonian languages. Bogotá. Loos, Eugene E. 1969. The phonology of Capanahua and its grammatical basis. Norman: SIL and U. Oklahoma. Russell, Robert & Dolores. 1959. Syntactotonemics in Amahuaca (Pano). Série Lingüistica Especial, 128-167. Publicaçoes do Museu Nacional, Rio de Janeiro, Brasil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interior of Hellas Basin displays a complex landscape and a variety of geomorphological domains. One of these domains, the enigmatic banded terrain covers much of the northwestern part of the basin. We use high-resolution (CTX and HiRISE) Digital Terrain Models to show that most of the complex viscous flowing behavior exhibited by the banded terrain is controlled by topography and flow-like interactions between neighboring banded terrain. Furthermore, the interior of the basin hosts several landforms suggestive of the presence of near-surface ice, which include polygonal patterns with elongated pits, scalloped depressions, isolated mounds and collapse structures. We suggest that thermal contraction cracking and sublimation of near-surface ice are responsible for the formation and the development of most of the ice-related landforms documented in Hellas. The relatively pristine form, lack of superposed craters, and strong association with the banded terrain, suggest an Amazonian (<3 Ga) age of formation for these landforms. Finally, relatively high surface pressures (above the triple point of water) expected in Hellas and summer-time temperatures often exceeding the melting point of water ice suggest that the basin may have recorded relatively “temperate” climatic conditions compared to other places on Mars. Therefore, the potentially ice-rich banded terrain may have deformed with lower viscosity and stresses compared to other locations on Mars, which may account for its unique morphology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Only few studies documenting the vegetation history of the Llanos de Moxos, one of the largest seasonally flooded wetland areas in South America, are available and little is known about the environmental impact of pre-Columbian settlements. We use radiocarbon-dated terrestrial plant macrofossils to establish a sound chronology and palynological analyses to reconstruct the vegetation and fire history of the Lago Rogaguado area. The sedimentary pollen and spore record suggests that wetland and wooded savannah (Cerrado) environments occurred around the lake between 8100 and 5800 cal BP. Fire activity was high during this period and was probably connected to the dry Cerrado environments. The pollen evidence suggests early plant cultivation (Zea mays, Annonaceae and Cucurbitaceae) from 6500 cal BP onwards, which is significantly earlier than hitherto assumed for Amazonia. Gallery forests expanded after 5800 cal BP, when fire activity strongly declined. Forest expansion intensified around 2800 cal BP and continued until 2000 cal BP, when forest cover reached its maximum and fire activity its minimum. The late-Holocene forest expansion to the south and the decrease of fire activity may have resulted from a climatic shift to moister conditions (possibly a shorter dry season). New crops (e.g. Avena-type) or adventive plants (e.g. Rumex acetosella-type) document the impact of European economies after ca. 500 cal BP. Land use intensity remained rather stable over the most recent centuries, arguing against a collapse of settlements in response to the arrival of Europeans, as reconstructed from other Amazonian pollen records.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hellas basin acts as a major sink for the southern highlands of Mars and is likely to have recorded several episodes of sedimentation and erosion. The north-western part of the basin displays a potentially unique Amazonian landscape domain in the deepest part of Hellas, called “banded terrain”, which is a deposit characterized by an alternation of narrow band shapes and inter-bands displaying a sinuous and relatively smooth surface texture suggesting a viscous flow origin. Here we use high-resolution (HiRISE and CTX) images to assess the geomorphological interaction of the banded terrain with the surrounding geomorphologic domains in the NW interior of Hellas to gain a better understanding of the geological evolution of the region as a whole. Our analysis reveals that the banded terrain is associated with six geomorphologic domains: a central plateau named Alpheus Colles, plain deposits (P1 and P2), reticulate (RT1 and RT2) and honeycomb terrains. Based on the analysis of the geomorphology of these domains and their cross-cutting relationships, we show that no widespread deposition post-dates the formation of the banded terrain, which implies that this domain is the youngest and latest deposit of the interior of Hellas. Therefore, the level of geologic activity in the NW Hellas during the Amazonian appears to have been relatively low and restricted to modification of the landscape through mechanical weathering, aeolian and periglacial processes. Thermophysical data and cross-cutting relationships support hypotheses of modification of the honeycomb terrain via vertical rise of diapirs such as ice diapirism, and the formation of the plain deposits through deposition and remobilization of an ice-rich mantle deposit. Finally, the observed gradual transition between honeycomb and banded terrain suggests that the banded terrain may have covered a larger area of the NW interior of Hellas in the past than previously thought. This has implications on the understanding of the evolution of the deepest part of Hellas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Byrd Glacier discontinuity us a major boundary crossing the Ross Orogen, with crystalline rocks to the north and primarily sedimentary rocks to the south. Most models for the tectonic development of the Ross Orogen in the central Transantarctic Mountains consits of two-dimensional transects across the belt, but do not adress the major longitudinal contrast at Byrd Glacier. This paper presents a tectonic model centering on the Byrd Glacier discontinuity. Rifting in the Neoproterozoic producede a crustal promontory in the craton margin to the north of Byrd Glacier. Oblique convergence of the terrane (Beardmore microcontinent) during the latest Neroproterozoic and Early Cambrian was accompanied by subduction along the craton margin of East Antarctica. New data presented herein in the support of this hypothesis are U-Pb dates of 545.7 ± 6.8 Ma and 531.0 ± 7.5 Ma on plutonic rocks from the Britannia Range, subduction stepped out, and Byrd Glacier. After docking of the terrane, subduction stepped out, and Byrd Group was deposited during the Atdabanian-Botomian across the inner margin of the terrane. Beginning in the upper Botomian, reactivation of the sutured boundaries of the terrane resulted in an outpouring of clastic sediment and folding and faulting of the Byrd Group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An example of cordierite-bearing gneiss that is part of a high-grade gneiss-migmatite sequence is described from the Hatch Plain in the Read Mountains of the Shackleton Range, Antarctica, for the first time. The cordierite-bearing rocks constitute the more melanosomic portions of the metatectic and migmatitic rocks that are associated with relict granulite facies rocks such as enderbitic granulite and enderbitic garnet granulite. The predominant mineral assemblage in the cordierite-bearing rocks is chemically homogeneous cordierite (XMg 0.61) and biotite (XMg 0.47), strongly zoned garnet (XMg 0.18-0.11), sillimanite, K-feldspar (Or81-94Ab5-18An0.6), plagioclase (An28), and quartz. Inclusions of sillimanite and biotite relics in both garnet and cordierite indicate that garnet and cordierite were produced by the coupled, discontinuous reaction biotite + sillimanite + quartz = cordierite + garnet + K-feldspar + H2O. Various garnet-biotite and garnet-cordierite geothermometers and sillimanite-quartz-plagioclase-garnet-cordierite geobarometers yield a continuous clockwise path in the P-T diagram. The P-T conditions for equilibrium between garnet core and cordierite and between garnet core and biotite during peak metamorphism and migmatization were estimated to be 690 °C at 5-6 kb. This was followed by cooling and unloading with continuously changing conditions down to 515 °C at 2-3 kb. This low-pressure re-equilibration correlates with the pressure conditions evaluated by SCHULZE (1989) for the widespread granitic gneisses of the Read Group in the Shackleton Range. The associated relict enderbitic granulites representing low-pressure type granulite (8 kb; 790 °C) are comparable to similar low-pressure granulites from the East Antarctic craton. They were either formed by under-accretion processes after collision (WELLS 1979, p. 217) or they are a product of remetamorphism at P-T conditions intermediate between granulite and amphibolite facies. A model of a multiple imbrication zone with crustal thickening (CUTHBERT et al. 1983) is discussed for the formation of the relict granulites of the central and eastern Read Mountains which show higher pressure conditions (8-12 kb, SCHULZE & OLESCH 1990), indicating a Proterozoic crustal thickness of at least 40 km.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the Shackleton Range of East Antarctica, garnet-bearing ultramafic rocks occur as lenses in supracrustal high-grade gneisses. In the presence of olivine, garnet is an unmistakable indicator of eclogite facies metamorphic conditions. The eclogite facies assemblages are only present in ultramafic rocks, particularly in pyroxenites, whereas other lithologies - including metabasites - lack such assemblages. We conclude that under high-temperature conditions, pyroxenites preserve high-pressure assemblages better than isofacial metabasites, provided the pressure is high enough to stabilize garnet-olivine assemblages (i.e. >=18-20 kbar). The Shackleton Range ultramafic rocks experienced a clockwise P-T path and peak conditions of 800-850 °C and 23-25 kbar. These conditions correspond to ~70 km depth of burial and a metamorphic gradient of 11-12 °C/km that is typical of a convergent plate-margin setting. The age of metamorphism is defined by two garnet-whole-rock Sm-Nd isochrons that give ages of 525 ± 5 and 520 ± 14 Ma corresponding to the time of the Pan-African orogeny. These results are evidence of a Pan-African suture zone within the northern Shackleton Range. This suture marks the site of a palaeo-subduction zone that likely continues to the Herbert Mountains, where ophiolitic rocks of Neoproterozoic age testify to an ocean basin that was closed during Pan-African collision. The garnet-bearing ultramafic rocks in the Shackleton Range are the first known example of eclogite facies metamorphism in Antarctica that is related to the collision of East and West Gondwana and the first example of Pan-African eclogite facies ultramafic rocks worldwide. Eclogites in the Lanterman Range of the Transantarctic Mountains formed during subduction of the palaeo-Pacific beneath the East Antarctic craton.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A marked ocean acidification event and elevated atmospheric carbon dioxide concentrations following the extreme environmental conditions of the younger Cryogenian glaciation have been inferred from boron isotope measurements. Calcium and magnesium isotope analyses offer additional insights into the processes occurring during this time. Data from Neoproterozoic sections in Namibia indicate that following the end of glaciation the continental weathering flux transitioned from being of mixed carbonate and silicate character to a silicate-dominated one. Combined with the effects of primary dolomite formation in the cap dolostones, this caused the ocean to depart from a state of acidification and return to higher pH after climatic amelioration. Differences in the magnitude of stratigraphic isotopic changes across the continental margin of the southern Congo craton shelf point to local influences modifying and amplifying the global signal, which need to be considered in order to avoid overestimation of the worldwide chemical weathering flux.