966 resultados para Algebra, Abstract.
Resumo:
Esta tesis constituye un gran avance en el conocimiento del estudio y análisis de inestabilidades hidrodinámicas desde un punto de vista físico y teórico, como consecuencia de haber desarrollado innovadoras técnicas para la resolución computacional eficiente y precisa de la parte principal del espectro correspondiente a los problemas de autovalores (EVP) multidimensionales que gobiernan la inestabilidad de flujos con dos o tres direcciones espaciales inhomogéneas, denominados problemas de estabilidad global lineal. En el contexto del trabajo de desarrollo de herramientas computacionales presentado en la tesis, la discretización mediante métodos de diferencias finitas estables de alto orden de los EVP bidimensionales y tridimensionales que se derivan de las ecuaciones de Navier-Stokes linealizadas sobre flujos con dos o tres direcciones espaciales inhomogéneas, ha permitido una aceleración de cuatro órdenes de magnitud en su resolución. Esta mejora de eficiencia numérica se ha conseguido gracias al hecho de que usando estos esquemas de diferencias finitas, técnicas eficientes de resolución de problemas lineales son utilizables, explotando el alto nivel de dispersión o alto número de elementos nulos en las matrices involucradas en los problemas tratados. Como más notable consecuencia cabe destacar que la resolución de EVPs multidimensionales de inestabilidad global, que hasta la fecha necesitaban de superordenadores, se ha podido realizar en ordenadores de sobremesa. Además de la solución de problemas de estabilidad global lineal, el mencionado desarrollo numérico facilitó la extensión de las ecuaciones de estabilidad parabolizadas (PSE) lineales y no lineales para analizar la inestabilidad de flujos que dependen fuertemente en dos direcciones espaciales y suavemente en la tercera con las ecuaciones de estabilidad parabolizadas tridimensionales (PSE-3D). Precisamente la capacidad de extensión del novedoso algoritmo PSE-3D para el estudio de interacciones no lineales de los modos de estabilidad, desarrollado íntegramente en esta tesis, permite la predicción de transición en flujos complejos de gran interés industrial y por lo tanto extiende el concepto clásico de PSE, el cuál ha sido empleado exitosamente durante las pasadas tres décadas en el mismo contexto para problemas de capa límite bidimensional. Típicos ejemplos de flujos incompresibles se han analizado en este trabajo sin la necesidad de recurrir a restrictivas presuposiciones usadas en el pasado. Se han estudiado problemas vorticales como es el caso de un vórtice aislado o sistemas de vórtices simulando la estela de alas, en los que la homogeneidad axial no se impone y así se puede considerar la difusión viscosa del flujo. Además, se ha estudiado el chorro giratorio turbulento, cuya inestabilidad se utiliza para mejorar las características de funcionamiento de combustores. En la tesis se abarcan adicionalmente problemas de flujos compresibles. Se presenta el estudio de inestabilidad de flujos de borde de ataque a diferentes velocidades de vuelo. También se analiza la estela formada por un elemento rugoso aislado en capa límite supersónica e hipersónica, mostrando excelentes comparaciones con resultados obtenidos mediante simulación numérica directa. Finalmente, nuevas inestabilidades se han identificado en el flujo hipersónico a Mach 7 alrededor de un cono elíptico que modela el vehículo de pruebas en vuelo HIFiRE-5. Los resultados comparan favorablemente con experimentos en vuelo, lo que subraya aún más el potencial de las metodologías de análisis de estabilidad desarrolladas en esta tesis. ABSTRACT The present thesis constitutes a step forward in advancing the frontiers of knowledge of fluid flow instability from a physical point of view, as a consequence of having been successful in developing groundbreaking methodologies for the efficient and accurate computation of the leading part of the spectrum pertinent to multi-dimensional eigenvalue problems (EVP) governing instability of flows with two or three inhomogeneous spatial directions. In the context of the numerical work presented in this thesis, the discretization of the spatial operator resulting from linearization of the Navier-Stokes equations around flows with two or three inhomogeneous spatial directions by variable-high-order stable finite-difference methods has permitted a speedup of four orders of magnitude in the solution of the corresponding two- and three-dimensional EVPs. This improvement of numerical performance has been achieved thanks to the high-sparsity level offered by the high-order finite-difference schemes employed for the discretization of the operators. This permitted use of efficient sparse linear algebra techniques without sacrificing accuracy and, consequently, solutions being obtained on typical workstations, as opposed to the previously employed supercomputers. Besides solution of the two- and three-dimensional EVPs of global linear instability, this development paved the way for the extension of the (linear and nonlinear) Parabolized Stability Equations (PSE) to analyze instability of flows which depend in a strongly-coupled inhomogeneous manner on two spatial directions and weakly on the third. Precisely the extensibility of the novel PSE-3D algorithm developed in the framework of the present thesis to study nonlinear flow instability permits transition prediction in flows of industrial interest, thus extending the classic PSE concept which has been successfully employed in the same context to boundary-layer type of flows over the last three decades. Typical examples of incompressible flows, the instability of which was analyzed in the present thesis without the need to resort to the restrictive assumptions used in the past, range from isolated vortices, and systems thereof, in which axial homogeneity is relaxed to consider viscous diffusion, as well as turbulent swirling jets, the instability of which is exploited in order to improve flame-holding properties of combustors. The instability of compressible subsonic and supersonic leading edge flows has been solved, and the wake of an isolated roughness element in a supersonic and hypersonic boundary-layer has also been analyzed with respect to its instability: excellent agreement with direct numerical simulation results has been obtained in all cases. Finally, instability analysis of Mach number 7 ow around an elliptic cone modeling the HIFiRE-5 flight test vehicle has unraveled flow instabilities near the minor-axis centerline, results comparing favorably with flight test predictions.
Resumo:
Writing an efficient abstract is always a difficult and significant work in academic writing. What kinds of abstracts are well reputed in sport science? To answer this question, 20 abstracts from top journals of sport science were analyzed in the current research. The number of words and rhetorical moves were studied to assess the structures of the abstracts. Meanwhile, the key clauses, citations, the use of first person pronoun, the adoption of abbreviations and acronyms, hedging and the main tense were included in the analysis of the writing skills. Results have show: (1) Almost all of the abstracts were non-structured, and the length varied a lot, but the average word count was about 210-220; (2) the use of writing skills, such as key clauses, citations and hedging differed depending on the preference of the journal where the abstract appeared, and the main tense was selected based on the context of the abstract. In most cases, abbreviations and acronyms were allowed to be used, while the first person pronoun was always avoided
Resumo:
In programming languages with dynamic use of memory, such as Java, knowing that a reference variable x points to an acyclic data structure is valuable for the analysis of termination and resource usage (e.g., execution time or memory consumption). For instance, this information guarantees that the depth of the data structure to which x points is greater than the depth of the data structure pointed to by x.f for any field f of x. This, in turn, allows bounding the number of iterations of a loop which traverses the structure by its depth, which is essential in order to prove the termination or infer the resource usage of the loop. The present paper provides an Abstract-Interpretation-based formalization of a static analysis for inferring acyclicity, which works on the reduced product of two abstract domains: reachability, which models the property that the location pointed to by a variable w can be reached by dereferencing another variable v (in this case, v is said to reach w); and cyclicity, modeling the property that v can point to a cyclic data structure. The analysis is proven to be sound and optimal with respect to the chosen abstraction.
Resumo:
We present a novel general resource analysis for logic programs based on sized types.Sized types are representations that incorporate structural (shape) information and allow expressing both lower and upper bounds on the size of a set of terms and their subterms at any position and depth. They also allow relating the sizes of terms and subterms occurring at different argument positions in logic predicates. Using these sized types, the resource analysis can infer both lower and upper bounds on the resources used by all the procedures in a program as functions on input term (and subterm) sizes, overcoming limitations of existing analyses and enhancing their precision. Our new resource analysis has been developed within the abstract interpretation framework, as an extension of the sized types abstract domain, and has been integrated into the Ciao preprocessor, CiaoPP. The abstract domain operations are integrated with the setting up and solving of recurrence equations for both, inferring size and resource usage functions. We show that the analysis is an improvement over the previous resource analysis present in CiaoPP and compares well in power to state of the art systems.
Resumo:
This work describes an experience with a methodology for learning based on competences in Linear Algebra for engineering students. The experience has been based in autonomous team work of students. DERIVE tutorials for Linear Algebra topics are provided to the students. They have to work with the tutorials as their homework. After, worksheets with exercises have been prepared to be solved by the students organized in teams, using DERIVE function previously defined in the tutorials. The students send to the instructor the solution of the proposed exercises and they fill a survey with their impressions about the following items: ease of use of the files, usefulness of the tutorials for understanding the mathematical topics and the time spent in the experience. As a final work, we have designed an activity directed to the interested students. They have to prepare a project, related with a real problem in Science and Engineering. The students are free to choose the topic and to develop it but they have to use DERIVE in the solution. Obviously they are guided by the instructor. Some examples of activities related with Orthogonal Transformations will be presented.
Resumo:
A toolbox is a set of procedures taking advantage of the computing power and graphical capacities of a CAS. With these procedures the students can solve math problems, apply mathematics to engineering or simply reinforce the learning of certain mathematical concepts. From the point of view of their construction, we can consider two types of toolboxes: (i) the closed box, built by the teacher, in which the utility files are provided to the students together with the respective tutorials and several worksheets with proposed exercises and problems,
Resumo:
We present a novel general resource analysis for logic programs based on sized types. Sized types are representations that incorporate structural (shape) information and allow expressing both lower and upper bounds on the size of a set of terms and their subterms at any position and depth. They also allow relating the sizes of terms and subterms occurring at different argument positions in logic predicates. Using these sized types, the resource analysis can infer both lower and upper bounds on the resources used by all the procedures in a program as functions on input term (and subterm) sizes, overcoming limitations of existing resource analyses and enhancing their precision. Our new resource analysis has been developed within the abstract interpretation framework, as an extension of the sized types abstract domain, and has been integrated into the Ciao preprocessor, CiaoPP. The abstract domain operations are integrated with the setting up and solving of recurrence equations for inferring both size and resource usage functions. We show that the analysis is an improvement over the previous resource analysis present in CiaoPP and compares well in power to state of the art systems.
Resumo:
Marca tip. en v. de port. y en v. de última h.
Resumo:
El documento presentado contiene una aproximación a algunos de los diversos problemas actuales existentes en el campo de la robótica paralela. Primeramente se hace una propuesta para el cálculo de los parámetros estructurales de los robots paralelos, mediante el desarrollo de una metodología que combina las herramientas del estudio de mecanismos con el álgebra lineal; en una segunda sección se propone la solución del problema geométrico directo a partir de la definición de ecuaciones de restricción y su respectiva solución usando métodos numéricos, así como la solución para el problema geométrico inverso; en la tercera parte se aborda el problema dinámico tanto directo como inverso y su solución a partir de una metodología basada en el método de Kane o de trabajos virtuales. Para las propuestas metodológicas expuestas se han desarrollado ejemplos de aplicación tanto teóricos como prácticos (simulaciones y pruebas físicas), donde se demuestra su alcance y desempeño, mediante su utilización en múltiples configuraciones para manipuladores paralelos, entre los que se destacan la plataforma Stewart Gough, y el 3-RRR. Todo con el objetivo de extender su aplicación en futuros trabajos de investigación en el área. ABSTRACT The document presented below provides an approach to some of the many current problems existing in the field of parallel robotics. First is maked a proposal for calculating the structural parameters of the parallel robots, through developing a methodology that combines tools to study mechanisms with the linear algebra; a second section contains a direct geometrical problem solution from the definition of constraint equations and their respective solution using numerical methods, as well as the solution to the inverse geometric problem; in the third part, both, direct and inverse dynamic problem and its solution based on methodology Kane or the method of virtual work are propossed. For each of the exposed methodological proposals they were developed examples of both theoretical and practical application (simulations and physical tests), where its scope and performance is demonstrated by its use in multiple configurations for parallel manipulators, among which stand out the platform Stewart Gough, and 3-RRR. All with the goal of extending its application in future research in the area.
Resumo:
A relatively simple definition of a locally compact quantum group in the C*-algebra setting will be explained as it was recently obtained by the authors. At the same time, we put this definition in the historical and mathematical context of locally compact groups, compact quantum groups, Kac algebras, multiplicative unitaries, and duality theory.
Resumo:
The “seminal” piece of Claes Oldenburg’s Ray Gun art is Empire (Papa) Ray Gun (1959), a paper maché sculpted gun resembling an erect phallus and swollen testicles. After Empire (Papa) Ray Gun, Oldenburg defined Ray Gun art as anything with a right angle—a form representing the angle at which a handgun’s barrel and handle meet and/or where the erect penis and hanging testicles meet. The forms and tenants of Ray Gun continued into Oldenburg’s later installations, performances, and soft and monumental sculptures.