922 resultados para Al2o3 Additions
Resumo:
Companies involved in emerald mining and treatment represent an important area of industrial development in Brazil, with significative contribution to the worldwide production of such mineral. As a result, large volumes of emerald waste are constantly generated and abandoned in the environment, negatively contributing to its preservation. By the other side the interest of the use of mining waste as additive in ceramic products has been growing from researchers in recent years. The ceramic industry is constantly seeking to the marked amplification for the sector and perfecting the quality of the products and to increase the variety of applications. The technology of obtaining of ceramic tiles that uses mining residues assists market niches little explored. In this scenario, the objective of the present study was to characterize the residue generated from emerald mining as well as to assess its potential use as raw material for the production of ceramic tiles. Ceramic mixtures were prepared from raw materials characterized by X-ray fluorescence, X-ray diffraction, particle size analysis and thermal analysis. Five compositions were prepared using emerald residue contents of 0%, 10%, 20%, 30% and 40%. Samples were uniaxially pressed, fired at 1000, 1100 and 1200ºC and characterized aiming at establishing their mineralogical composition, water absorption, apparent porosity, specific mass, linear retraction and modulus of rupture. The results shows that the emerald residue, basically consisted of 73% of (SiO2 + Al2O3) and 17,77% of (MgO + Na2O+ K2O) (that facilitates sintering), can be added to the ceramic tile materials with no detrimental effect on the properties of the sintered products
Resumo:
In this work, were produced ceramic matrix composites based in SiCxOy e Al2O3 reinforced with NbC, by hydrosilylation reaction between D4Vi and poly(methylhydrosiloxane) mixtured with Al2O3 as inert filler, Nb and Al as reactive filler. After the mixture and compactation at 80ºC (warm pressing), the samples were pyrolised at 1200 and 1400ºC and infiltred with ICZ and LZSA respectively, and thermically, physical and structurally characterized by X-ray diffraction, density and porosity, flexural mechanical strength and fracture surface by scanning electron microscopy. The yield ceramic obtained after pyrolysis for studied composition at 1200ºC was 95%. The obtained phases had been identified as being Al3Nb, NbSi2 and NbC. The composite material presented apparent porosity varying of 15 up to 32% and mechanical flexural strenght of 32 up to 37,5MPa. After the fracture surface analysis, were observed a phases homogeneous dispersion, with some domains of amorphous and crystalline aspect. The samples that were submitted the infiltration cycle presented a layer next the surface with reduced pores number in relation to the total volume
Resumo:
The aluminothermic reduction consists in an exothermic reaction between a metallic oxide and aluminum to produce the metal and the scum. The extracted melted metal of that reaction usually comes mixed with particles of Al2O3 resulting of the reduction, needing of subsequent refine to eliminate the residual impure as well as to eliminate porosities. Seeking to obtain a product in powder form with nanometric size or even submicrometric, the conventional heat source of the reaction aluminothermic , where a resistor is used (ignitor) as ignition source was substituted, for the plasma, that acts more efficient way in each particle of the sample. In that work it was used as metallic oxide the niobium pentoxide (Nb2O5) for the exothermal reaction Nb2O5 + Al. Amounts stoichiometric, substoichiometric and superestoichiometric of aluminum were used. The Nb2O5 powder was mixed with aluminum powder and milled in planetarium of high energy for a period of 6 hours. Those powders were immerged in plasm that acts in a punctual way in each particle, transfering heat, so that the reaction can be initiate and spread integrally for the whole volume of the particle. The mixture of Nb2O5 + Al was characterized through the particle size analysis by laser and X-ray diffraction (DRX) and the obtained product of reaction was characterized using the electronic microscopy of sweeping (MEV) and the formed phases were analyzed by DRX. Niobium powders with inferior sizes to 1 mm were obtained by that method. It is noticed, through the analysis of the obtained results, that is possible to accomplish the aluminothermic reduction process by plasma ignition with final particles with inferior sizes to the original oxide
Resumo:
The need to build durable structures and resistant to harsh environments enabled the development of high strength concrete, these activities generate a high cement consumption, which implies factor in CO2 emissions. Often the desired strength is not achieved using only the cement composition. This study aims to evaluate the influence of pozzolans with the addition of metakaolin on the physical mechanics of high strength concrete comparing them with the standard formulation. Assays were performed to characterize the aggregates according to NBR 7211, evaluation of cement and coarse aggregate through the trials of petrography (NBR 15577-3/08) and alkali-aggregate reaction (NBR 15577-05/08). Specimens were fabricated according to NBR 5738-1/04 with additions of 0%, 4%, 6%, 8% and 10% of metakaolin for cement mortars CP V in the formulations. For evaluation of the concrete hardened in fresh state and scattering assays were performed and compressive strength in accordance with the NBR 7223/1992 and NBR 5739-8/94 respectively. The results of the characterization of aggregates showed good characteristics regarding size analysis and petrography, as well as potentially innocuous as the alkali-aggregate reaction. As to the test of resistance to compression, all the formulations with the addition of metakaolin showed higher value at 28 days of disruption compared with the standard formulation. These results present an alternative to reduce CO2 emissions, and improvements in the quality and durability of concrete, because the fine particle size of metakaolin provides an optimal compression of the mass directly influencing the strength and rheology of the dough
Resumo:
Emerald mining is an important area of the economy in Brazil, country which is in second place among the exporting nations of this gem. Due to the process of extraction, a great amount of reject is generated. Since there is no appropriate destination, the reject is abandoned around the mining industries, contributing to environment degradation. Nowadays, some of the most relevant things to an industry in general are: energy conservation, cost reduction, quality and productivity enhancement. The production of isolating, transformed refractory materials achieves the sustainability dimension when protection of the environment is incorporated to such process. This work investigates the use of emerald mining rejects in the ceramic body of refractory materials, aiming at obtaining a product whose characteristics are compatible with commercial products and, at the same time, allow the use of such rejects to solve the environmental issue caused by its disposal in nature. X-ray fluorescence analysis show that the emerald reject obtained after the flotation to extract molybdenum and mica has 70% of silica and alumina (SiO2+Al2O3) and 21% of a basic oxides and alkaline metals and earthy alkaline mixture (Na2O, K2O, CaO e MgO). Because of the significant amount of silica and alumina present in the reject, four refractory ceramic bodies were prepared. Samples with a rectangular shape and dimensions 100x50x10 mm were pressed in a steel mold at 27,5 MPa and sintered at 1200ºC for 40 min. under environment atmosphere in a resistive oven. The sintered samples were characterized in relation to the chemical composition (FRX), mineralogical composition (DRX), microstructure (MEV) and physical and mechanical properties. The results indicate that the mixture with 45% of reject, 45% of alumina and 10% of kaolin presents a refractory quality of 1420ºC, dimensional linear variation below 2.00%, apparent specific mass of 1,56 g/cm3 and porosity of 46,68%, which demonstrates the potential use of the reject as raw material for the industry of isolating transformed refractory materials
Resumo:
Amorphous silica-alumina and modified by incipient impregnation of iron, nickel, zinc and chromium were synthetized in oxide and metal state and evaluated as catalysts for the chloromethane conversion reaction. With known techniques their textural properties were determined and dynamics techniques in programmed temperature were used to find the acid properties of the materials. A thermodynamic model was used to determine the adsorption and desorption capacity of chloromethane. Two types of reactions were studied. Firstly the chloromethane was catalytically converted to hydrocarbons (T = 300 450 oC e m = 300 mg) in a fixed bed reactor with controlled pressure and flow. Secondly the deactivation of the unmodified support was studied (at 300 °C and m=250 g) in a micro-adsorver provided of gravimetric monitoring. The metal content (2,5%) and the chloromethane percent of the reagent mixture (10% chloromethane in nitrogen) were fixed for all the tests. From the results the chloromethane conversion and selectivity of the gaseous products (H2, CH4, C3 and C4) were determined as well as the energy of desorption (75,2 KJ/mol for Ni/Al2O3-SiO2 to 684 KJ/mol for the Zn/Al2O3-SiO2 catalyst) considering the desorption rate as a temperature function. The presence of a metal on the support showed to have an important significance in the chloromethane condensation. The oxide class catalyst presented a better performance toward the production of hydrocarbons. Especial mention to the ZnO/Al2O3-SiO2 that, in a gas phase basis, produced C3 83 % max. and C4 63% max., respectively, in the temperature of 450 oC and 20 hours on stream. Hydrogen was produced exclusively in the FeO/Al2O3-SiO2 catalysts (15 % max., T = 550 oC and 5,6 h on stream) and Ni/SiO2-Al2O3 (75 % max., T = 400 oC and 21,6 h on stream). All the catalysts produced methane (10 à 92 %), except for Ni/Al2O3-SiO2 and CrO/Al2O3-SiO2. In the deactivation study two models were proposed: The parallel model, where the product production competes with coke formation; and the sequential model, where the coke formation competes with the product desorption dessorption step. With the mass balance equations and the mechanism proposed six parameters were determined. Two kinetic parameters: the hydrocarbon formation constant, 8,46 10-4 min-1, the coke formation, 1,46 10-1 min-1; three thermodynamic constants (the global, 0,003, the chloromethane adsorption 0,417 bar-1, the hydrocarbon adsorption 2,266 bar-1), and the activity exponent of the coke formation (1,516). The model was reasonable well fitted and presented a satisfactory behavior in relation with the proposed mechanism
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The extracellular glycerol kinase gene from Saccharomyces cerevisiae (GUT]) was cloned into the expression vector pPICZ alpha. A and integrated into the genome of the methylotrophic yeast Pichia pastoris X-33. The presence of the GUT1 insert was confirmed by PCR analysis. Four clones were selected and the functionality of the recombinant enzyme was assayed. Among the tested clones, one exhibited glycerol kinase activity of 0.32 U/mL, with specific activity of 0.025 U/mg of protein. A medium optimized for maximum biomass production by recombinant Pichia pastoris in shaker cultures was initially explored, using 2.31 % (by volume) glycerol as the carbon source. Optimization was carried out by response surface methodology (RSM). In preliminary experiments, following a Plackett-Burman design, glycerol volume fraction (phi(Gly)) and growth time (t) were selected as the most important factors in biomass production. Therefore, subsequent experiments, carried out to optimize biomass production, followed a central composite rotatable design as a function of phi(Gly) and time. Glycerol volume fraction proved to have a significant positive linear effect on biomass production. Also, time was a significant factor (at linear positive and quadratic levels) in biomass production. Experimental data were well fitted by a convex surface representing a second order polynomial model, in which biomass is a function of both factors (R(2)=0.946). Yield and specific activity of glycerol kinase were mainly affected by the additions of glycerol and methanol to the medium. The optimized medium composition for enzyme production was: 1 % yeast extract, 1 % peptone, 100 mM potassium phosphate buffer, pH=6.0, 1.34 % yeast nitrogen base (YNB), 4.10(-5) % biotin, 1 %, methanol and 1 %, glycerol, reaching 0.89 U/mL of glycerol kinase activity and 14.55 g/L of total protein in the medium after 48 h of growth.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A method has been developed to obtain quantitative information about grain size and shape from fractured surfaces of ceramic materials. One elaborated a routine to split intergranular and transgranular grains facets of ceramic fracture surfaces by digital image processing. A commercial ceramic (ALCOA A-16, Al2O3-1.5% of CrO) was used to test the proposed method. Microstructural measurements of grain shape and size taken from fracture surfaces have been compared through descriptive statistics of distributions, with the corresponding measurements from polished and etched surfaces. The agreement between results, with the expected bias on grain size values from fractures, obtained for both types of surfaces allowed to infer that this new technique can be used to extract the relevant microstructural information from fractured surfaces, thus minimising the time consuming steps of sample preparation. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Porosity in starch consolidation casting technique is rightly related to original size and morphology of starch granules, leaving a pore structure after burning out. This work reports the results for the addition of different native potato and corn starch proportions in suspension,; with TiO(2) (rutile) powder. Gelling temperature have been defined after observation under light microscopy using a heating stage. Analysis of porous network and isolated pores have been clone from images of samples surfaces obtained by depth from focus reconstruction, revealing a qualitative correlation of pores characteristics and starches additions in suspensions, suggesting that the presence of isolated or interconnected pores can be handled by starches selection to control the amylopectin and amylose contents in slurries. Also, the analysis of porous fraction distribution shows no consistent pattern through specimens' volume according to starches in mixtures.
Resumo:
In this work, expanded perlite, a mineral clay, consisting of SiO2 and Al2O3 in the proportions of 72.1 and 18.5%, respectively, was used as an adsorbent for oil in its pure expanded form as well as hydrofobized with linseed oil. Thermogravimetry (TG), Derivative Thermogravimetry (DTG) and Differential Thermal Analysis (DTA) were used to study the thermal behavior and quantify the percent adsorption of perlite in differents processes comparing the results with the ones obtained using Gravimetric Analysis. In the process of hydrophobization with linseed oil granulometric fractions > 20, 20-32 and 32-60 mesh were used and adsorption tests with crude oil were performed in triplicate at room temperature. The results obtained by TG/DTG in dynamic atmosphere of air showed mass losses in a single step for the expanded perlite with pure adsorbed oil, indicating that the adsorption of oil was limited and that the particle size did not in this process. Linseed oil has performed well as an agent of hydrophobized perlite (32 to 60 mesh) indicating a maximum percentage of 59.9% and 68.6% the linseed with a fraction range from considering the data obtained by thermogravimetry and Gravimetry, respectively. The adsorption of oil in the expanded perlite and hydrofobized pure perlite with linseed oil did not produce good results, characterizing an increase of 0.5 to 4.6% in pure perlite and 3.3% in hydrofobized perlite with granulometric 32 to 60 mesh
Resumo:
Although there are many studies on urban dust contamination by heavy metals in developed countries, little attention has been paid to this type of study in developing countries, including Brazil. Therefore, a series of investigations were performed to provide signatures of heavy metals in urban dust and assess the potential sources in the city of Natal - RN-Brazil. The fraction of these sediments was studied to pass through a sieve of 63 micrometers. For the study analyzed two groups of samples, one collected in September 2009 at the end of the rainy season (9 samples) and one collected in January 2010 in the dry season (21 samples). So in all, thirty sediment samples were collected from the street. Then, in Fluorescence Spectrometry X-rays were determined major elements SiO2, Na2O, K2O, Al2O3, MgO, P2O5, Fe2O3, MnO, TiO2 and CaO, and trace Rb, Cr, Ni, Cu, Zn, Sr and Pb by an ICPOES was determined Zn, V, Na, K, Ni, Mn, Mg, P, Fe, Cr, Cu, Pb, Ba, Ca and Al from leaching HCl 0.5 mol L-1 . The results of the concentrations of elements show that the greater presence of these occurs in the dry season, except for Si which is higher in the rainy season. Analyses by geoaccumulation Index (IGEO) Enrichment Factor (EF), Contamination Factor (CF), analysis correlation and Hierarchical Cluster, confirm that Zn, Cu and Pb is anthropogenic character. Zinc may be derived from various sources related to motor vehicles or the road signs and street grids. The elements Na, K, Mg and Ca may be related to droplets suspended in air containing cations and anions present in seawater (salty), common in Christmas throughout the year, brought by winds SE-NW. The elements Na, Mg, Ca and K are the most abundant in seawater and were analyzed in this study. This indicates that the source of these additional elements detected by analyzing the contamination factor may be the very sea. Moreover, Ni, Fe, Cr and Ba can be either as a source of anthropogenic geogênica. The source of Ca is different, because it comes in lime and paint (painting guides of buildings and streets) in construction materials, but may also be present in sediments in the fragments of shells or carbonate bioclasts common in the coastal area
Resumo:
This dissertation focuses on rock thermal conductivity and its correlations with petrographic, textural, and geochemical aspects, especially in granite rocks. It aims at demonstrating the relations of these variables in an attempt to enlighten the behavior of thermal effect on rocks. Results can be useful for several applications, such as understanding and conferring regional thermal flow results, predicting the behavior of thermal effect on rocks based upon macroscopic evaluation (texture and mineralogy), in the building construction field in order to provide more precise information on data refinement on thermal properties emphasizing a rocky material thermal conductivity, and especially in the dimension stone industry in order to open a discussion on the use of these variables as a new technological parameter directly related to thermal comfort. Thermal conductivity data were obtained by using Anter Corporation s QuicklineTM -30 a thermal property measuring equipment. Measurements were conducted at temperatures ranging between 25 to 38 OC in samples with 2cm in length and an area of at least 6cm of diameter. As to petrography data, results demonstrated good correlations with quartz and mafics. Linear correlation between mineralogy and thermal conductivity revealed a positive relation of a quartz percentage increase in relation to a thermal conductivity increase and its decrease with mafic minerals increase. As to feldspates (K-feldspate and plagioclase) they show dispersion. Quartz relation gets more evident when compared to sample sets with >20% and <20%. Sets with more than 20% quartz (sienogranites, monzogranites, granodiorites, etc.), exhibit to a great extent conductivity values which vary from 2,5 W/mK and the set with less than 20% (sienites, monzonites, gabbros, diorites, etc.) have an average thermal conductivity below 2,5 W/mK. As to textures it has been verified that rocks considered thick/porphyry demonstrated in general better correlations when compared to rocks considered thin/medium. In the case of quartz, thick rocks/porphyry showed greater correlation factors when compared to the thin/medium ones. As to feldspates (K-feldspate and plagioclase) again there was dispersion. As to mafics, both thick/porphyry and thin/medium showed negative correlations with correlation factor smaller than those obtained in relation to the quartz. As to rocks related to the Streckeisen s QAP diagram (1976), they tend to fall from alcali-feldspates granites to tonalites, and from sienites to gabbros, diorites, etc. Thermal conductivity data correlation with geochemistry confirmed to a great extent mineralogy results. It has been seen that correlation is linear if there is any. Such behavior could be seen especially with the SiO2. In this case similar correlation can be observed with the quartz, that is, thermal conductivity increases as SiO2 is incremented. Another aspect observed is that basic to intermediate rocks presented values always below 2,5 W/mK, a similar behavior to that observed in rocks with quartz <20%. Acid rocks presented values above 2,5 W/mK, a similar behavior to that observed in rocks with quartz >20% (granites). For all the other cases, correlation factors are always low and present opposite behavior to Fe2O3, CaO, MgO, and TiO2. As to Al2O3, K2O, and Na2O results are not conclusive and are statistically disperse. Thermal property knowledge especially thermal conductivity and its application in the building construction field appeared to be very satisfactory for it involves both technological and thermal comfort aspects, which favored in all cases fast, cheap, and precise results. The relation between thermal conductivity and linear thermal dilatation have also shown satisfactory results especially when it comes to the quartz role as a common, determining phase between the two variables. Thermal conductivity studies together with rocky material density can function as an additional tool for choosing materials when considering structural calculation aspects and thermal comfort, for in the dimension stone case there is a small density variation in relation to a thermal conductivity considerable variation