916 resultados para Air exchange rate


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Previous studies of photosynthetic acclimation to elevated CO2 have focused on the most recently expanded, sunlit leaves in the canopy. We examined acclimation in a vertical profile of leaves through a canopy of wheat (Triticum aestivum L.). The crop was grown at an elevated CO2 partial pressure of 55 Pa within a replicated field experiment using free-air CO2 enrichment. Gas exchange was used to estimate in vivo carboxylation capacity and the maximum rate of ribulose-1,5-bisphosphate-limited photosynthesis. Net photosynthetic CO2 uptake was measured for leaves in situ within the canopy. Leaf contents of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), light-harvesting-complex (LHC) proteins, and total N were determined. Elevated CO2 did not affect carboxylation capacity in the most recently expanded leaves but led to a decrease in lower, shaded leaves during grain development. Despite this acclimation, in situ photosynthetic CO2 uptake remained higher under elevated CO2. Acclimation at elevated CO2 was accompanied by decreases in both Rubisco and total leaf N contents and an increase in LHC content. Elevated CO2 led to a larger increase in LHC/Rubisco in lower canopy leaves than in the uppermost leaf. Acclimation of leaf photosynthesis to elevated CO2 therefore depended on both vertical position within the canopy and the developmental stage.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The anatomy of the domestic duck lung was studied macroscopically, by casting and by light, transmission, and scanning electron microscopy. The lung had four categories of secondary bronchi (SB), namely, the medioventral (MV, 4-5), laterodorsal (LD, 6-10), lateroventral (LV, 2-4), and posterior secondary bronchi (PO, 36-44). The neopulmonic parabronchi formed an intricate feltwork on the ventral third of the lung and inosculated those from the other SB. The lung parenchyma was organized into cylindrical parabronchi separated by thin septa containing blood vessels. Atria were shallow and well-fortified by epithelial ridges reinforced by smooth muscle bundles and gave rise to 2-6 elongate infundibulae. Air capillaries arose either directly from the atria or from infundibulae and were tubular or globular in shape with thin interconnecting branches. The newly described spatial disposition of the conducting air conduits closely resembles that of the chicken. This remarkable similarity between the categories, numbers, and 3D arrangement of the SB in the duck and chicken points to a convergence in function-oriented design. To illuminate airflow dynamics in the avian lung, precise directions of airflow in the various categories of SB and parabronchi need to be characterized.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mathematical modelling underlying passive air sampling theory can be based on mass transfer coefficients or rate constants. Generally, these models have not been inter-related. Starting with basic models, the exchange of chemicals between the gaseous phase and the sampler is developed using mass transfer coefficients and rate constants. Importantly, the inter-relationships between the approaches are demonstrated by relating uptake rate constants and loss rate constants to mass transfer coefficients when either sampler-side or air-side resistance is dominating chemical exchange. The influence of sampler area and sampler volume on chemical exchange is discussed in general terms and as they relate to frequently used parameters such as sampling rates and time to equilibrium. Where air-side or sampler-side resistance dominates, an increase in the surface area of the sampler will increase sampling rates. Sampling rates are not related to the sampler/air partition coefficient (K-SV) when air-side resistance dominates and increase with K-SV when sampler-side resistance dominates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The sea-surface microlayer (SML) is at the upper- most surface of the ocean, linking the hydrosphere with the atmosphere. The presence and enrichment of organic compounds in the SML have been suggested to influence air- sea gas exchange processes as well as the emission of primary organic aerosols. Here, we report on organic matter components collected from an approximately 50µm thick SML and from the underlying water (ULW), ca. 20 cm below the SML, in December 2012 during the SOPRAN METEOR 91 cruise to the highly productive, coastal upwelling regime off the coast of Peru. Samples were collected at 37 stations including coastal upwelling sites and off-shore stations with less organic matter and were analyzed for total and dissolved high molecular weight (> 1 kDa) combined carbohydrates (TCCHO, DCCHO), free amino acids (FAA), total and dissolved hydrolyzable amino acids (THAA, DHAA), transparent exopolymer particles (TEP), Coomassie stainable particles (CSPs), total and dissolved organic carbon (TOC, DOC), total and dissolved nitrogen (TN, TDN), as well as bacterial and phytoplankton abundance. Our results showed a close coupling between organic matter concentrations in the water column and in the SML for almost all components except for FAA and DHAA that showed highest enrichment in the SML on average. Accumulation of gel particles (i.e., TEP and CSP) in the SML differed spatially. While CSP abundance in the SML was not related to wind speed, TEP abundance decreased with wind speed, leading to a depletion of TEP in the SML at about 5 m s-1 . Our study provides insight to the physical and biological control of organic matter enrichment in the SML, and discusses the potential role of organic matter in the SML for air-sea exchange processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a methodology to predict benzene uptake rate in ambient air, using passive samplers with Tenax TA. Variations in the uptake rate were found to occur as a function of the sampling time; and were greater at the beginning of sampling. An empirical model was obtained and values for uptake rate agree with literature. Concentration prediction errors can be minimized by using sampling times of 4 to 14 days, thus avoiding the influence of excessive uptake rates in the initial days and the influence of back diffusion at the end of the sampling period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seasonal variation in environmental conditions may influence gas exchange rates as well as water relations in perennial species. This work was carried out to evaluate photosynthetic rates (A), transpiration (E), stomatal conductance (g) and leaf water potential (psi f ) in 'Valencia' orange trees grafted on four different rootstocks. Measurements were made twice a day: from 9h00 to 11h00 a.m. and from 1h00 to 3h00 p.m., during January, March and July. A and g were significantly lower and psif was significantly more negative, in the afternoon. The decrease in A may be related to the reduction in g, due to the increase in the vapor pressure deficit between the air and the leaf (VPDair-leaf ) in the afternoon, when temperatures are higher. In spite of the partial stomatal closure in the afternoon, the values for E were approximately the same as those measured in the morning, due to the increase in the VPDair-leaf . A decrease in A and g could also be noted from January to July, that is, from the hot and humid summer months, to the colder and drier winter ones. It was suggested that the decrease in A and g observed from January through March, may be related to the decrease in plant growth rates, which could have influenced the source-sink relationships, since the climatic conditions for both months were similar. The decrease in A and g showed in July, seems to be related to the decrease in both the night temperature and the growth rate of plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background This study aimed to evaluate the association between the total suspended particles (TSP) generated from burning sugar cane plantations and the incidence of hospital admissions from hypertension in the city of Araraquara. Methods The study was an ecological time-series study. Total daily records of hypertension (ICD 10th I10-15) were obtained from admitted patients of all ages in a hospital in Araraquara, Sao Paulo State, Brazil, from 23 March 2003 to 27 July 2004. The daily concentration of TSP (mu g/m(3)) was obtained using a Handi-Vol sampler placed in downtown Araraquara. The local airport provided daily measures of temperature and humidity. In generalised linear Poisson regression models, the daily number of hospital admissions for hypertension was considered to be the dependent variable and the daily TSP concentration the independent variable. Results TSP presented a lagged effect on hypertension admissions, which was first observed 1 day after a TSP increase and remained almost unchanged for the following 2 days. A 10 mu g/m(3) increase in the TSP 3 day moving average lagged in 1 day led to an increase in hypertension-related hospital admissions during the harvest period (12.5%, 95% CI 5.6% to 19.9%) that was almost 30% higher than during non-harvest periods (9.0%, 95% CI 4.0% to 14.3%). Conclusions Increases in TSP concentrations were associated with hypertension-related hospital admissions. Despite the benefits of reduced air pollution in urban cities achieved by using ethanol produced from sugar cane to power automobiles, areas where the sugar cane is produced and harvested were found to have increased public health risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: Air-pollution exposure has been associated with increased cardiovascular hospital admissions and mortality in time-series studies. We evaluated the relation between air pollutants and emergency room (ER) visits because of cardiac arrhythmia in a cardiology hospital. Methods: In a time-series study, we evaluated the association between the emergency room visits as a result of cardiac arrhythmia and daily variations in SO2, CO, NO2, O-3 and PM10, from January 1998 to August 1999. The cases of arrhythmia were modelled using generalised linear Poisson regression models, controlling for seasonality (short-term and long-term trend), and weather. Results: Interquartile range increases in CO (1.5 ppm), NO2 (49,5 mu g/m(3)) and PM10 (22.2 mu g/m(3)) on the concurrent day were associated with increases of 12.3% (95% CI: 7.6% to 17.2%), 10.4% (95% CI: 5.2% to 15.9%) and 6.7% (95% CI: 1.2% to 12.4%) in arrhythmia ER visits, respectively. PM10, CO and NO2 effects were dose-dependent and gaseous pollutants had thresholds. Only CO effect resisted estimates in models with more than one pollutant. Conclusions: Our results showed that air pollutant effects on arrhythmia are predominantly acute starting at concentrations below air quality standards, and the association with CO and NO2 suggests a relevant role for pollution caused by cars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the measurement of the depth of maximum, X(max), of the longitudinal development of air showers induced by cosmic rays. Almost 4000 events above 10(18) eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106 +/- 35-21) g/cm(2)/decade below 10(18.24) +/- (0.05) eV, and d24 +/- 3 g/cm(2)/ecade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm(2). The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of the solvent-evaporation rate on the formation of of. and P crystalline phases in solution-cast poly(vinylidene fluoride) (PVDF) films was systematically investigated. Films were crystallized from PVDF/N,N-dimethylformamide solutions with concentrations of 2.5, 5.0, 10, and 20 wt % at different temperatures. During crystallization, the solvent evaporation rate was monitored in situ by means of a semianalytic balance. With this system, it was possible to determine the evaporation rate for different concentrations and temperatures of the solution under specific ambient conditions (pressure, temperature, and humidity). Fourier-Transform InfraRed spectroscopy with Attenuated Total Reflectance revealed the P-phase content in the PVDF films and its dependence on previous evaporation rates. Based on the relation between the evaporation rate and the PVDF phase composition, a consistent explanation for the different amounts of P phase observed at the upper and lower sample surfaces is achieved. Furthermore, the role of the sample thickness has also been studied. The experimental results show that not only the temperature but also the evaporation rate have to be controlled to obtain the desired crystalline phases in solution-cast PVDF films. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 116: 785-791, 2010

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the air download is an important feature for terrestrial digital television systems. It provides a cheaper option for DTV receiver manufacturers to provide bug fixes and quality improvements to their products, allowing a shorter time to the market. This paper presents a mechanism proposal of an over the air download software update for the Brazilian system. This mechanism was specified considering the Brazilian DTV over the air download specifications, but it was extended considering efficiency, reliability and user transparency as requirements for software update. A proof of concept was implemented on a Linux based set-top box. The mechanism is divided into five main functional parts: download schedule, packets download, packets authentication, installation and error robustness. Some analyses were conducted upon the implementation considering the following criteria: download robustness and maximum downloading rate. (1)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate how the summer and winter conditions affect the photosynthesis and water relations of well-watered orange trees, considering the diurnal changes in leaf gas exchange, chlorophyll (Chl) fluorescence, and leaf water potential (I) of potted-plants growing in a subtropical climate. The diurnal pattern of photosynthesis in young citrus trees was not significantly affected by the environmental changes when compared the summer and winter seasons. However, citrus plants showed higher photosynthetic performance in summer, when plants fixed 2.9 times more CO(2) during the diurnal period than in the winter season. Curiously, the winter conditions were more favorable to photosynthesis of citrus plants, when considering the air temperature (< 29 A degrees C), leaf-to-air vapor pressure difference (< 2.4 kPa) and photon flux density (maximum values near light saturation) during the diurnal period. Therefore, low night temperature was the main environmental element changing the photosynthetic performance and water relations of well-watered plants during winter. Lower whole-plant hydraulic conductance, lower shoot hydration and lower stomatal conductance were noticed during winter when compared to the summer season. In winter, higher ratio between the apparent electron transport rate and leaf CO(2) assimilation was verified in afternoon, indicating reduction in electron use efficiency by photosynthesis. The high radiation loading in the summer season did not impair the citrus photochemistry, being photoprotective mechanisms active. Such mechanisms were related to increases in the heat dissipation of excessive light energy at the PSII level and to other metabolic processes consuming electrons, which impede the citrus photoinhibition under high light conditions.