906 resultados para Agricultural systems modelling
Resumo:
Ammonia emissions from livestock production can have negative impacts on nearby protected sites and ecosystems that are sensitive to eutrophication and acidification. Trees are effective scavengers of both gaseous and particulate pollutants from the atmosphere making tree belts potentially effective landscape features to support strategies aiming to reduce ammonia impacts. This research used the MODDAS-THETIS a coupled turbulence and deposition turbulence model, to examine the relationships between tree canopy structure and ammonia capture for three source types?animal housing, slurry lagoon, and livestock under a tree canopy. By altering the canopy length, leaf area index, leaf area density, and height of the canopy in the model the capture efficiencies varied substantially. A maximum of 27% of the emitted ammonia was captured by tree canopy for the animal housing source, for the slurry lagoon the maximum was 19%, while the livestock under trees attained a maximum of 60% recapture. Using agro-forestry systems of differing tree structures near ?hot spots? of ammonia in the landscape could provide an effective abatement option for the livestock industry that complements existing source reduction measures.
Resumo:
The development of mixed-criticality virtualized multi-core systems poses new challenges that are being subject of active research work. There is an additional complexity: it is now required to identify a set of partitions, and allocate applications to partitions. In this job, a number of issues have to be considered, such as the criticality level of the application, security and dependability requirements, time requirements granularity, etc. MultiPARTES [11] toolset relies on Model Driven Engineering (MDE), which is a suitable approach in this setting, as it helps to bridge the gap between design issues and partitioning concerns. MDE is changing the way systems are developed nowadays, reducing development time. In general, modelling approaches have shown their benefits when applied to embedded systems. These benefits have been achieved by fostering reuse with an intensive use of abstractions, or automating the generation of boiler-plate code.
Resumo:
In the last decade, multi-sensor data fusion has become a broadly demanded discipline to achieve advanced solutions that can be applied in many real world situations, either civil or military. In Defence,accurate detection of all target objects is fundamental to maintaining situational awareness, to locating threats in the battlefield and to identifying and protecting strategically own forces. Civil applications, such as traffic monitoring, have similar requirements in terms of object detection and reliable identification of incidents in order to ensure safety of road users. Thanks to the appropriate data fusion technique, we can give these systems the power to exploit automatically all relevant information from multiple sources to face for instance mission needs or assess daily supervision operations. This paper focuses on its application to active vehicle monitoring in a particular area of high density traffic, and how it is redirecting the research activities being carried out in the computer vision, signal processing and machine learning fields for improving the effectiveness of detection and tracking in ground surveillance scenarios in general. Specifically, our system proposes fusion of data at a feature level which is extracted from a video camera and a laser scanner. In addition, a stochastic-based tracking which introduces some particle filters into the model to deal with uncertainty due to occlusions and improve the previous detection output is presented in this paper. It has been shown that this computer vision tracker contributes to detect objects even under poor visual information. Finally, in the same way that humans are able to analyze both temporal and spatial relations among items in the scene to associate them a meaning, once the targets objects have been correctly detected and tracked, it is desired that machines can provide a trustworthy description of what is happening in the scene under surveillance. Accomplishing so ambitious task requires a machine learning-based hierarchic architecture able to extract and analyse behaviours at different abstraction levels. A real experimental testbed has been implemented for the evaluation of the proposed modular system. Such scenario is a closed circuit where real traffic situations can be simulated. First results have shown the strength of the proposed system.
Resumo:
La mejora de la calidad del aire es una tarea eminentemente interdisciplinaria. Dada la gran variedad de ciencias y partes involucradas, dicha mejora requiere de herramientas de evaluación simples y completamente integradas. La modelización para la evaluación integrada (integrated assessment modeling) ha demostrado ser una solución adecuada para la descripción de los sistemas de contaminación atmosférica puesto que considera cada una de las etapas involucradas: emisiones, química y dispersión atmosférica, impactos ambientales asociados y potencial de disminución. Varios modelos de evaluación integrada ya están disponibles a escala continental, cubriendo cada una de las etapas antesmencionadas, siendo el modelo GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) el más reconocido y usado en el contexto europeo de toma de decisiones medioambientales. Sin embargo, el manejo de la calidad del aire a escala nacional/regional dentro del marco de la evaluación integrada es deseable. Esto sin embargo, no se lleva a cabo de manera satisfactoria con modelos a escala europea debido a la falta de resolución espacial o de detalle en los datos auxiliares, principalmente los inventarios de emisión y los patrones meteorológicos, entre otros. El objetivo de esta tesis es presentar los desarrollos en el diseño y aplicación de un modelo de evaluación integrada especialmente concebido para España y Portugal. El modelo AERIS (Atmospheric Evaluation and Research Integrated system for Spain) es capaz de cuantificar perfiles de concentración para varios contaminantes (NO2, SO2, PM10, PM2,5, NH3 y O3), el depósito atmosférico de especies de azufre y nitrógeno así como sus impactos en cultivos, vegetación, ecosistemas y salud como respuesta a cambios porcentuales en las emisiones de sectores relevantes. La versión actual de AERIS considera 20 sectores de emisión, ya sea equivalentes a sectores individuales SNAP o macrosectores, cuya contribución a los niveles de calidad del aire, depósito e impactos han sido modelados a través de matrices fuentereceptor (SRMs). Estas matrices son constantes de proporcionalidad que relacionan cambios en emisiones con diferentes indicadores de calidad del aire y han sido obtenidas a través de parametrizaciones estadísticas de un modelo de calidad del aire (AQM). Para el caso concreto de AERIS, su modelo de calidad del aire “de origen” consistió en el modelo WRF para la meteorología y en el modelo CMAQ para los procesos químico-atmosféricos. La cuantificación del depósito atmosférico, de los impactos en ecosistemas, cultivos, vegetación y salud humana se ha realizado siguiendo las metodologías estándar establecidas bajo los marcos internacionales de negociación, tales como CLRTAP. La estructura de programación está basada en MATLAB®, permitiendo gran compatibilidad con software típico de escritorio comoMicrosoft Excel® o ArcGIS®. En relación con los niveles de calidad del aire, AERIS es capaz de proveer datos de media anual y media mensual, así como el 19o valor horario más alto paraNO2, el 25o valor horario y el 4o valor diario más altos para SO2, el 36o valor diario más alto para PM10, el 26o valor octohorario más alto, SOMO35 y AOT40 para O3. En relación al depósito atmosférico, el depósito acumulado anual por unidad de area de especies de nitrógeno oxidado y reducido al igual que de azufre pueden ser determinados. Cuando los valores anteriormente mencionados se relacionan con características del dominio modelado tales como uso de suelo, cubiertas vegetales y forestales, censos poblacionales o estudios epidemiológicos, un gran número de impactos puede ser calculado. Centrándose en los impactos a ecosistemas y suelos, AERIS es capaz de estimar las superaciones de cargas críticas y las superaciones medias acumuladas para especies de nitrógeno y azufre. Los daños a bosques se calculan como una superación de los niveles críticos de NO2 y SO2 establecidos. Además, AERIS es capaz de cuantificar daños causados por O3 y SO2 en vid, maíz, patata, arroz, girasol, tabaco, tomate, sandía y trigo. Los impactos en salud humana han sido modelados como consecuencia de la exposición a PM2,5 y O3 y cuantificados como pérdidas en la esperanza de vida estadística e indicadores de mortalidad prematura. La exactitud del modelo de evaluación integrada ha sido contrastada estadísticamente con los resultados obtenidos por el modelo de calidad del aire convencional, exhibiendo en la mayoría de los casos un buen nivel de correspondencia. Debido a que la cuantificación de los impactos no es llevada a cabo directamente por el modelo de calidad del aire, un análisis de credibilidad ha sido realizado mediante la comparación de los resultados de AERIS con los de GAINS para un escenario de emisiones determinado. El análisis reveló un buen nivel de correspondencia en las medias y en las distribuciones probabilísticas de los conjuntos de datos. Las pruebas de verificación que fueron aplicadas a AERIS sugieren que los resultados son suficientemente consistentes para ser considerados como razonables y realistas. En conclusión, la principal motivación para la creación del modelo fue el producir una herramienta confiable y a la vez simple para el soporte de las partes involucradas en la toma de decisiones, de cara a analizar diferentes escenarios “y si” con un bajo coste computacional. La interacción con políticos y otros actores dictó encontrar un compromiso entre la complejidad del modeladomedioambiental con el carácter conciso de las políticas, siendo esto algo que AERIS refleja en sus estructuras conceptual y computacional. Finalmente, cabe decir que AERIS ha sido creado para su uso exclusivo dentro de un marco de evaluación y de ninguna manera debe ser considerado como un sustituto de los modelos de calidad del aire ordinarios. ABSTRACT Improving air quality is an eminently inter-disciplinary task. The wide variety of sciences and stakeholders that are involved call for having simple yet fully-integrated and reliable evaluation tools available. Integrated AssessmentModeling has proved to be a suitable solution for the description of air pollution systems due to the fact that it considers each of the involved stages: emissions, atmospheric chemistry, dispersion, environmental impacts and abatement potentials. Some integrated assessment models are available at European scale that cover each of the before mentioned stages, being the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model the most recognized and widely-used within a European policy-making context. However, addressing air quality at the national/regional scale under an integrated assessment framework is desirable. To do so, European-scale models do not provide enough spatial resolution or detail in their ancillary data sources, mainly emission inventories and local meteorology patterns as well as associated results. The objective of this dissertation is to present the developments in the design and application of an Integrated Assessment Model especially conceived for Spain and Portugal. The Atmospheric Evaluation and Research Integrated system for Spain (AERIS) is able to quantify concentration profiles for several pollutants (NO2, SO2, PM10, PM2.5, NH3 and O3), the atmospheric deposition of sulfur and nitrogen species and their related impacts on crops, vegetation, ecosystems and health as a response to percentual changes in the emissions of relevant sectors. The current version of AERIS considers 20 emission sectors, either corresponding to individual SNAP sectors or macrosectors, whose contribution to air quality levels, deposition and impacts have been modeled through the use of source-receptor matrices (SRMs). Thesematrices are proportionality constants that relate emission changes with different air quality indicators and have been derived through statistical parameterizations of an air qualitymodeling system (AQM). For the concrete case of AERIS, its parent AQM relied on the WRF model for meteorology and on the CMAQ model for atmospheric chemical processes. The quantification of atmospheric deposition, impacts on ecosystems, crops, vegetation and human health has been carried out following the standard methodologies established under international negotiation frameworks such as CLRTAP. The programming structure isMATLAB ® -based, allowing great compatibility with typical software such as Microsoft Excel ® or ArcGIS ® Regarding air quality levels, AERIS is able to provide mean annual andmean monthly concentration values, as well as the indicators established in Directive 2008/50/EC, namely the 19th highest hourly value for NO2, the 25th highest daily value and the 4th highest hourly value for SO2, the 36th highest daily value of PM10, the 26th highest maximum 8-hour daily value, SOMO35 and AOT40 for O3. Regarding atmospheric deposition, the annual accumulated deposition per unit of area of species of oxidized and reduced nitrogen as well as sulfur can be estimated. When relating the before mentioned values with specific characteristics of the modeling domain such as land use, forest and crops covers, population counts and epidemiological studies, a wide array of impacts can be calculated. When focusing on impacts on ecosystems and soils, AERIS is able to estimate critical load exceedances and accumulated average exceedances for nitrogen and sulfur species. Damage on forests is estimated as an exceedance of established critical levels of NO2 and SO2. Additionally, AERIS is able to quantify damage caused by O3 and SO2 on grapes, maize, potato, rice, sunflower, tobacco, tomato, watermelon and wheat. Impacts on human health aremodeled as a consequence of exposure to PM2.5 and O3 and quantified as losses in statistical life expectancy and premature mortality indicators. The accuracy of the IAM has been tested by statistically contrasting the obtained results with those yielded by the conventional AQM, exhibiting in most cases a good agreement level. Due to the fact that impacts cannot be directly produced by the AQM, a credibility analysis was carried out for the outputs of AERIS for a given emission scenario by comparing them through probability tests against the performance of GAINS for the same scenario. This analysis revealed a good correspondence in the mean behavior and the probabilistic distributions of the datasets. The verification tests that were applied to AERIS suggest that results are consistent enough to be credited as reasonable and realistic. In conclusion, the main reason thatmotivated the creation of this model was to produce a reliable yet simple screening tool that would provide decision and policy making support for different “what-if” scenarios at a low computing cost. The interaction with politicians and other stakeholders dictated that reconciling the complexity of modeling with the conciseness of policies should be reflected by AERIS in both, its conceptual and computational structures. It should be noted however, that AERIS has been created under a policy-driven framework and by no means should be considered as a substitute of the ordinary AQM.
Resumo:
En las últimas décadas, la agricultura sostenible ha sido objeto de gran interés y debate académico, no sólo en términos conceptuales, sino también en términos metodológicos. La persistencia de la inseguridad alimentaria y el deterioro de los recursos naturales en muchas regiones del mundo, ha provocado el surgimiento de numerosas iniciativas centradas en revitalizar la agricultura campesina así como renovadas discusiones sobre el rol que juega la agricultura como motor de desarrollo y principal actividad para alivio de la pobreza. Por ello, cuando hablamos de evaluar sistemas campesinos de montaña, debemos considerar tanto la dimensión alimentaria como las especificidades propias de los sistemas montañosos como base fundamental de la sostenibilidad. Al evaluar la contribución que han hecho alternativas tecnológicas y de manejo en la mejora de la sostenibilidad y la seguridad alimentaria de los sistemas campesinos de montaña en Mesoamérica, surgen tres preguntas de investigación: • ¿Se está evaluando la sostenibilidad de los sistemas campesinos teniendo en cuenta la variabilidad climática, la participación de los agricultores y las dinámicas temporales? • ¿Podemos rescatar tendencias comunes en estos sistemas y extrapolar los resultados a otras zonas? • ¿Son inequívocamente positivas las alternativas propuestas que se han llevado a cabo? En este trabajo se presentan tres evaluaciones de sostenibilidad que tratan de poner de manifiesto cuáles son los retos y oportunidades que enfrentan actualmente los sistemas campesinos de montaña. En primer lugar, se evalúan tres sistemas de manejo agrícola bajo dos años meteorológicamente contrastantes. Se determinó que durante el año que experimentó lluvias abundantes y temperaturas moderadas, los sistemas de bajos insumos, basados en el uso de abonos orgánicos y rotación de cultivos, obtuvieron los mejores resultados en indicadores ecológicos y similares resultados en los económicos y sociales que el sistema de altos insumos químicos. En el segundo año, con heladas tempranas y sequía invernal, la productividad se redujo para todos los sistemas pero los sistemas más diversificados (en variedades de maíz y/o siembra de otros cultivos) pudieron resistir mejor los contratiempos climáticos. En segundo lugar, se evalúa el grado de conocimiento (percepción) campesino para determinar los factores claves que determinan la sostenibilidad de sus sistemas y su seguridad alimentaria. Se determinó que los principales puntos críticos identificados por los campesinos (tamaño de parcela y pendiente del terreno) afectan de forma significativa a cuestiones de índole económica, pero no son capaces de explicar los desequilibrios alimenticios existentes. Realizando un análisis comparativo entre comunidades que presentaban buenos y malos resultados en cuanto a aporte energético y proteico, se determinó que la seguridad alimentaria estaba relacionada con la sostenibilidad de los sistemas y que concretamente estaba ligada a los atributos de equidad y autonomía. Otro resultado destacable fue que las comunidades más marginales y con mayor dificultad de acceso mostraron mayores niveles de inseguridad alimentaria, pero la variabilidad intergrupal fue muy alta. Eso demuestra que la seguridad alimentaria y nutricional forma parte de un complejo sistema de estrategias de autoabastecimiento ligada a la idiosincrasia misma de cada uno de los hogares. En tercer lugar, se evaluó el desempeño de las escuelas de campo de agricultores (ECAs) en la mejora de la sostenibilidad y la seguridad alimentaria de un sistema campesino de montaña. Para ver el efecto del impacto de estas metodologías a largo plazo, se estudiaron tres comunidades donde se habían implementado ECAs hace 8, 5 y 3 años. Encontramos que el impacto fue progresivo ya que fue la comunidad más antigua la que mejores valores obtuvo. El impacto de las ECAs fue rápido y persistente en los indicadores relacionados con la participación, el acceso a servicios básicos y la conservación de los recursos naturales. El estudio demostró un claro potencial de las ECAs en la mejora general de la sostenibilidad y la seguridad alimentaria de estos sistemas, sin embargo se observó una relación directa entre el aumento de producción agrícola y el uso de insumos externos, lo que puede suponer un punto crítico para los ideales sostenibles. ABSTRACT During the last decades, sustainable agriculture has been the subject of considerable academic interest and debate, not only in conceptual terms, but also in methodological ones. The persistence of high levels of environmental degradation and food insecurity in many regions has led to new initiatives focused on revitalizing peasant agriculture and renewed discussions of the role of sustainable agriculture as an engine for development, environmental conservation and poverty alleviation. Therefore, to assess mountain farming systems, we must consider food dimension and taking into account the specificities of the mountain systems as the foundation of sustainability. When evaluating contribution of technological and management alternative proposals in achieving sustainability and food security for peasant farming systems in Mesoamerican highlands, three research questions arise: • Is sustainability of peasant-farming systems being evaluated taking into account climate variability, participation of farmers and temporal dynamics? • Can we rescue common trends in these systems and extrapolate the results to other areas? • What alternative proposals that have been conducted are unequivocally positives? In this document, we present three evaluations of sustainability that try to highlight the challenges and opportunities that currently face mountain farming systems in Mesoamerica. First, we evaluate the sustainability of three agricultural management systems in two contrasting weather years. We determined that during the first year that exposed heavy rains and moderate temperatures, low-input systems, which are based on the use of organic fertilizers and crop rotation, provided better results in terms of ecological indicators and equal results in terms of economic and social indicators than those achieved using a high chemical input system. In the second year, which featured early frosts and a winter drought, productivity declined in all systems; however, the most diversified systems (in terms of the maize varieties grown and the sowing of other crops) more successfully resisted these climatic adversities. Second, we evaluate the farmers’ perception to determine the key drivers for achieving their sustainability and food and nutritional security. We determined that the key factors identified by farmers (landholding size and slope of cropland) exerted significant impacts on economic disparities but did not explain the malnutrition levels. We compared two contrasting hamlets according to their energy and protein supply, one namely Limón Timoté (LT), which did not present food problems and Limón Peña Blanca (LP), which did exhibit food insecurity. The results showed that FNS is linked to sustainability, and it is primarily related to the sustainability attributes of self-reliance and equity. Although the more marginated and inaccessible community exhibited more food insecurity, food and nutritional security depend upon a complex array of self-sufficiency strategies that remain linked to individual household idiosyncrasies. Third, we evaluated the impact of farmer field schools for improving the sustainability and food security of peasant mountain systems. In order to appreciate the long-term impact, we studied three communities where FFSs were implemented eight, five and three years ago, respectively. We found that FFSs have a gradual impact, as the community that first implemented FFSs scores highest. The impact of FFSs was broad and long-lasting for indicators related to participation, access to basic services and conservation of natural resources. This study demonstrates the potential of FFSs, but more attention will have to be paid to critical indicators in order to scale up their potential in the future. We observed a direct relationship between the increase in agricultural production and the use of external inputs, which is a critical point for sustainable ideals.
Resumo:
Vivimos una época en la que el mundo se transforma aceleradamente. La globalización está siguiendo un curso imparable, la población mundial así como la población urbana siguen creciendo, y en los países emergentes los ingresos promedios aumentan, resultando en un cambio también acelerado de las dietas y hábitos alimentarios. En conjunto esos factores están causando un aumento fundamental de la demanda de alimentos. Junto con la apertura de los mercados agrícolas, estos procesos han provocado un crecimiento del comercio internacional de alimentos durante la última década. Dado que muchos países de América Latina están dotados de abundancia de recursos naturales, estas tendencias han producido un crecimiento rápido de las exportaciones de bienes primarios desde América Latina al resto del mundo. En sólo 30 años la participación en el mercado agrícola de América Latina casi se ha duplicado, desde 10% en 1980 a 18% en 2010. Este aumento del comercio agrícola ha dado lugar a un debate sobre una serie de cuestiones cruciales relacionadas con los impactos del comercio en la seguridad alimentaria mundial, en el medio ambiente o en la reducción de la pobreza rural en países en desarrollo. Esta tesis aplica un marco integrado para analizar varios impactos relacionados con la transformación de los mercados agrícolas y los mercados rurales debidos a la globalización y, en particular, al progresivo aumento del comercio internacional. En concreto, la tesis aborda los siguientes temas: En primer lugar, la producción mundial de alimentos tendrá que aumentar considerablemente para poder satisfacer la demanda de una población mundial de 9000 millones personas en 2050, lo cual plantea grandes desafíos sobre los sistemas de la producción de alimentos. Alcanzar este logro, sin comprometer la integridad del medio ambiente en regiones exportadoras, es un reto aún mayor. En este contexto, la tesis analiza los efectos de la liberalización del comercio mundial, considerando distintas tecnologías de producción agraria, sobre unos indicadores de seguridad alimentaria en diferentes regiones del mundo y sobre distintos indicadores ambientales, teniendo en cuenta escalas diferentes en América Latina y el Caribe. La tesis utiliza el modelo “International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT)” – un modelo dinámico de equilibrio parcial del sector agrícola a escala global – para modelar la apertura de los mercados agrícolas así como diferentes escenarios de la producción hasta el año 2050. Los resultados del modelo están vinculados a modelos biofísicos para poder evaluar los cambios en la huella hídrica y la calidad del agua, así como para cuantificar los impactos del cambio en el uso del suelo sobre la biodiversidad y los stocks de carbono en 2050. Los resultados indican que la apertura de los mercados agrícolas es muy importante para mejorar la seguridad alimentaria a nivel mundial, sin embargo, produce también presiones ambientales indeseables en algunas regiones de América Latina. Contrastando dos escenarios que consideran distintas modos de producción, la expansión de la tierra agrícola frente a un escenario de la producción más intensiva, se demuestra que las mejoras de productividad son generalmente superiores a la expansión de las tierras agrícolas, desde un punto de vista económico e ambiental. En cambio, los escenarios de intensificación sostenible no sólo hacen posible una mayor producción de alimentos, sino que también generan menos impactos medioambientales que los otros escenarios futuros en todas sus dimensiones: biodiversidad, carbono, emisiones de nitratos y uso del agua. El análisis muestra que hay un “trade-off” entre el objetivo de alcanzar la sostenibilidad ambiental y el objetivo de la seguridad alimentaria, independiente del manejo agrícola en el futuro. En segundo lugar, a la luz de la reciente crisis de los precios de alimentos en los años 2007/08, la tesis analiza los impactos de la apertura de los mercados agrícolas en la transmisión de precios de los alimentos en seis países de América Latina: Argentina, Brasil, Chile, Colombia, México y el Perú. Para identificar las posibles relaciones de cointegración entre los índices de precios al consumidor de alimentos y los índices de precios de agrarios internacionales, sujetos a diferentes grados de apertura de mercados agrícolas en los seis países de América Latina, se utiliza un modelo simple de corrección de error (single equation error correction). Los resultados indican que la integración global de los mercados agrícolas ha dado lugar a diferentes tasas de transmisión de precios en los países investigados. Sobre todo en el corto plazo, las tasas de transmisión dependen del grado de apertura comercial, mientras que en el largo plazo las tasas de transmisión son elevadas, pero en gran medida independientes del régimen de comercio. Por lo tanto, durante un período de shocks de precios mundiales una mayor apertura del comercio trae consigo más inestabilidad de los precios domésticos a corto plazo y la resultante persistencia en el largo plazo. Sin embargo, estos resultados no verifican necesariamente la utilidad de las políticas comerciales, aplicadas frecuentemente por los gobiernos para amortiguar los shocks de precios. Primero, porque existe un riesgo considerable de volatilidad de los precios debido a cambios bruscos de la oferta nacional si se promueve la autosuficiencia en el país; y segundo, la política de proteccionismo asume el riesgo de excluir el país de participar en las cadenas de suministro de alto valor del sector agrícola, y por lo tanto esa política podría obstaculizar el desarrollo económico. Sin embargo, es indispensable establecer políticas efectivas para reducir la vulnerabilidad de los hogares a los aumentos repentinos de precios de alimentos, lo cual requiere una planificación gubernamental precisa con el presupuesto requerido disponible. En tercer lugar, la globalización afecta a la estructura de una economía y, por medios distintos, la distribución de los ingreso en un país. Perú sirve como ejemplo para investigar más profundamente las cuestiones relacionadas con los cambios en la distribución de los ingresos en zonas rurales. Perú, que es un país que está cada vez más integrado en los mercados mundiales, consiguió importantes descensos en la pobreza extrema en sus zonas rurales, pero a la vez adolece de alta incidencia de pobreza moderada y de desigualdad de los ingresos en zonas rural al menos durante el periodo comprendido entre 2004 y 2012. Esta parte de la tesis tiene como objetivo identificar las fuerzas impulsoras detrás de estas dinámicas en el Perú mediante el uso de un modelo de microsimulación basado en modelos de generación de ingresos aplicado a nivel los hogares rurales. Los resultados indican que la fuerza principal detrás de la reducción de la pobreza ha sido el crecimiento económico general de la economía, debido a las condiciones macroeconómicas favorables durante el periodo de estudio. Estos efectos de crecimiento beneficiaron a casi todos los sectores rurales, y dieron lugar a la disminución de la pobreza rural extrema, especialmente entre los agricultores de papas y de maíz. En parte, estos agricultores probablemente se beneficiaron de la apertura de los mercados agrícolas, que es lo que podría haber provocado un aumento de los precios al productor en tiempos de altos precios mundiales de los alimentos. Sin embargo, los resultados también sugieren que para una gran parte de la población más pobre existían barreras de entrada a la hora de poder participar en el empleo asalariado fuera de la agricultura o en la producción de cultivos de alto valor. Esto podría explicarse por la falta de acceso a unos activos importantes: por ejemplo, el nivel de educación de los pobres era apenas mejor en 2012 que en 2004; y también las dotaciones de tierra y de mano de obra, sobre todo de los productores pobres de maíz y patata, disminuyeron entre 2004 y 2012. Esto lleva a la conclusión de que aún hay margen para aplicar políticas para facilitar el acceso a estos activos, que podría contribuir a la erradicación de la pobreza rural. La tesis concluye que el comercio agrícola puede ser un importante medio para abastecer una población mundial creciente y más rica con una cantidad suficiente de calorías. Para evitar adversos efectos ambientales e impactos negativos para los consumidores y de los productores pobres, el enfoque debe centrarse en las mejoras de la productividad agrícola, teniendo en cuenta los límites ambientales y ser socialmente inclusivo. En este sentido, será indispensable seguir desarrollando soluciones tecnológicas que garanticen prácticas de producción agrícola minimizando el uso de recursos naturales. Además, para los pequeños pobres agricultores será fundamental eliminar las barreras de entrada a los mercados de exportación que podría tener efectos indirectos favorables a través de la adopción de nuevas tecnologías alcanzables a través de mercados internacionales. ABSTRACT The world is in a state of rapid transition. Ongoing globalization, population growth, rising living standards and increasing urbanization, accompanied by changing dietary patterns throughout the world, are increasing the demand for food. Together with more open trade regimes, this has triggered growing international agricultural trade during the last decade. For many Latin American countries, which are gifted with relative natural resource abundance, these trends have fueled rapid export growth of primary goods. In just 30 years, the Latin American agricultural market share has almost doubled from 10% in 1980 to 18% in 2010. These market developments have given rise to a debate around a number of crucial issues related to the role of agricultural trade for global food security, for the environment or for poverty reduction in developing countries. This thesis uses an integrated framework to analyze a broad array of possible impacts related to transforming agricultural and rural markets in light of globalization, and in particular of increasing trade activity. Specifically, the following issues are approached: First, global food production will have to rise substantially by the year 2050 to meet effective demand of a nine billion people world population which poses major challenges to food production systems. Doing so without compromising environmental integrity in exporting regions is an even greater challenge. In this context, the thesis explores the effects of future global trade liberalization on food security indicators in different world regions and on a variety of environmental indicators at different scales in Latin America and the Caribbean, in due consideration of different future agricultural production practices. The International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT) –a global dynamic partial equilibrium model of the agricultural sector developed by the International Food Policy Research Institute (IFPRI)– is applied to run different future production scenarios, and agricultural trade regimes out to 2050. Model results are linked to biophysical models, used to assess changes in water footprints and water quality, as well as impacts on biodiversity and carbon stocks from land use change by 2050. Results indicate that further trade liberalization is crucial for improving food security globally, but that it would also lead to more environmental pressures in some regions across Latin America. Contrasting land expansion versus more intensified agriculture shows that productivity improvements are generally superior to agricultural land expansion, from an economic and environmental point of view. Most promising for achieving food security and environmental goals, in equal measure, is the sustainable intensification scenario. However, the analysis shows that there are trade-offs between environmental and food security goals for all agricultural development paths. Second, in light of the recent food price crisis of 2007/08, the thesis looks at the impacts of increasing agricultural market integration on food price transmission from global to domestic markets in six Latin American countries, namely Argentina, Brazil, Chile, Colombia, Mexico and Peru. To identify possible cointegrating relationships between the domestic food consumer price indices and world food price levels, subject to different degrees of agricultural market integration in the six Latin American countries, a single equation error correction model is used. Results suggest that global agricultural market integration has led to different levels of price path-through in the studied countries. Especially in the short-run, transmission rates depend on the degree of trade openness, while in the long-run transmission rates are high, but largely independent of the country-specific trade regime. Hence, under world price shocks more trade openness brings with it more price instability in the short-term and the resulting persistence in the long-term. However, these findings do not necessarily verify the usefulness of trade policies, often applied by governments to buffer such price shocks. First, because there is a considerable risk of price volatility due to domestic supply shocks if self-sufficiency is promoted. Second, protectionism bears the risk of excluding a country from participating in beneficial high-value agricultural supply chains, thereby hampering economic development. Nevertheless, to reduce households’ vulnerability to sudden and large increases of food prices, effective policies to buffer food price shocks should be put in place, but must be carefully planned with the required budget readily available. Third, globalization affects the structure of an economy and, by different means, the distribution of income in a country. Peru serves as an example to dive deeper into questions related to changes in the income distribution in rural areas. Peru, a country being increasingly integrated into global food markets, experienced large drops in extreme rural poverty, but persistently high rates of moderate rural poverty and rural income inequality between 2004 and 2012. The thesis aims at disentangling the driving forces behind these dynamics by using a microsimulation model based on rural household income generation models. Results provide evidence that the main force behind poverty reduction was overall economic growth of the economy due to generally favorable macroeconomic market conditions. These growth effects benefited almost all rural sectors, and led to declines in extreme rural poverty, especially among potato and maize farmers. In part, these farmers probably benefited from policy changes towards more open trade regimes and the resulting higher producer prices in times of elevated global food price levels. However, the results also suggest that entry barriers existed for the poorer part of the population to participate in well-paid wage-employment outside of agriculture or in high-value crop production. This could be explained by a lack of sufficient access to important rural assets. For example, poor people’s educational attainment was hardly better in 2012 than in 2004. Also land and labor endowments, especially of (poor) maize and potato growers, rather decreased than increased over time. This leads to the conclusion that there is still scope for policy action to facilitate access to these assets, which could contribute to the eradication of rural poverty. The thesis concludes that agricultural trade can be one important means to provide a growing and richer world population with sufficient amounts of calories. To avoid adverse environmental effects and negative impacts for poor food consumers and producers, the focus should lie on agricultural productivity improvements, considering environmental limits and be socially inclusive. In this sense, it will be crucial to further develop technological solutions that guarantee resource-sparing agricultural production practices, and to remove entry barriers for small poor farmers to export markets which might allow for technological spill-over effects from high-value global agricultural supply chains.
Resumo:
El uso de aritmética de punto fijo es una opción de diseño muy extendida en sistemas con fuertes restricciones de área, consumo o rendimiento. Para producir implementaciones donde los costes se minimicen sin impactar negativamente en la precisión de los resultados debemos llevar a cabo una asignación cuidadosa de anchuras de palabra. Encontrar la combinación óptima de anchuras de palabra en coma fija para un sistema dado es un problema combinatorio NP-hard al que los diseñadores dedican entre el 25 y el 50 % del ciclo de diseño. Las plataformas hardware reconfigurables, como son las FPGAs, también se benefician de las ventajas que ofrece la aritmética de coma fija, ya que éstas compensan las frecuencias de reloj más bajas y el uso más ineficiente del hardware que hacen estas plataformas respecto a los ASICs. A medida que las FPGAs se popularizan para su uso en computación científica los diseños aumentan de tamaño y complejidad hasta llegar al punto en que no pueden ser manejados eficientemente por las técnicas actuales de modelado de señal y ruido de cuantificación y de optimización de anchura de palabra. En esta Tesis Doctoral exploramos distintos aspectos del problema de la cuantificación y presentamos nuevas metodologías para cada uno de ellos: Las técnicas basadas en extensiones de intervalos han permitido obtener modelos de propagación de señal y ruido de cuantificación muy precisos en sistemas con operaciones no lineales. Nosotros llevamos esta aproximación un paso más allá introduciendo elementos de Multi-Element Generalized Polynomial Chaos (ME-gPC) y combinándolos con una técnica moderna basada en Modified Affine Arithmetic (MAA) estadístico para así modelar sistemas que contienen estructuras de control de flujo. Nuestra metodología genera los distintos caminos de ejecución automáticamente, determina las regiones del dominio de entrada que ejercitarán cada uno de ellos y extrae los momentos estadísticos del sistema a partir de dichas soluciones parciales. Utilizamos esta técnica para estimar tanto el rango dinámico como el ruido de redondeo en sistemas con las ya mencionadas estructuras de control de flujo y mostramos la precisión de nuestra aproximación, que en determinados casos de uso con operadores no lineales llega a tener tan solo una desviación del 0.04% con respecto a los valores de referencia obtenidos mediante simulación. Un inconveniente conocido de las técnicas basadas en extensiones de intervalos es la explosión combinacional de términos a medida que el tamaño de los sistemas a estudiar crece, lo cual conlleva problemas de escalabilidad. Para afrontar este problema presen tamos una técnica de inyección de ruidos agrupados que hace grupos con las señales del sistema, introduce las fuentes de ruido para cada uno de los grupos por separado y finalmente combina los resultados de cada uno de ellos. De esta forma, el número de fuentes de ruido queda controlado en cada momento y, debido a ello, la explosión combinatoria se minimiza. También presentamos un algoritmo de particionado multi-vía destinado a minimizar la desviación de los resultados a causa de la pérdida de correlación entre términos de ruido con el objetivo de mantener los resultados tan precisos como sea posible. La presente Tesis Doctoral también aborda el desarrollo de metodologías de optimización de anchura de palabra basadas en simulaciones de Monte-Cario que se ejecuten en tiempos razonables. Para ello presentamos dos nuevas técnicas que exploran la reducción del tiempo de ejecución desde distintos ángulos: En primer lugar, el método interpolativo aplica un interpolador sencillo pero preciso para estimar la sensibilidad de cada señal, y que es usado después durante la etapa de optimización. En segundo lugar, el método incremental gira en torno al hecho de que, aunque es estrictamente necesario mantener un intervalo de confianza dado para los resultados finales de nuestra búsqueda, podemos emplear niveles de confianza más relajados, lo cual deriva en un menor número de pruebas por simulación, en las etapas iniciales de la búsqueda, cuando todavía estamos lejos de las soluciones optimizadas. Mediante estas dos aproximaciones demostramos que podemos acelerar el tiempo de ejecución de los algoritmos clásicos de búsqueda voraz en factores de hasta x240 para problemas de tamaño pequeño/mediano. Finalmente, este libro presenta HOPLITE, una infraestructura de cuantificación automatizada, flexible y modular que incluye la implementación de las técnicas anteriores y se proporciona de forma pública. Su objetivo es ofrecer a desabolladores e investigadores un entorno común para prototipar y verificar nuevas metodologías de cuantificación de forma sencilla. Describimos el flujo de trabajo, justificamos las decisiones de diseño tomadas, explicamos su API pública y hacemos una demostración paso a paso de su funcionamiento. Además mostramos, a través de un ejemplo sencillo, la forma en que conectar nuevas extensiones a la herramienta con las interfaces ya existentes para poder así expandir y mejorar las capacidades de HOPLITE. ABSTRACT Using fixed-point arithmetic is one of the most common design choices for systems where area, power or throughput are heavily constrained. In order to produce implementations where the cost is minimized without negatively impacting the accuracy of the results, a careful assignment of word-lengths is required. The problem of finding the optimal combination of fixed-point word-lengths for a given system is a combinatorial NP-hard problem to which developers devote between 25 and 50% of the design-cycle time. Reconfigurable hardware platforms such as FPGAs also benefit of the advantages of fixed-point arithmetic, as it compensates for the slower clock frequencies and less efficient area utilization of the hardware platform with respect to ASICs. As FPGAs become commonly used for scientific computation, designs constantly grow larger and more complex, up to the point where they cannot be handled efficiently by current signal and quantization noise modelling and word-length optimization methodologies. In this Ph.D. Thesis we explore different aspects of the quantization problem and we present new methodologies for each of them: The techniques based on extensions of intervals have allowed to obtain accurate models of the signal and quantization noise propagation in systems with non-linear operations. We take this approach a step further by introducing elements of MultiElement Generalized Polynomial Chaos (ME-gPC) and combining them with an stateof- the-art Statistical Modified Affine Arithmetic (MAA) based methodology in order to model systems that contain control-flow structures. Our methodology produces the different execution paths automatically, determines the regions of the input domain that will exercise them, and extracts the system statistical moments from the partial results. We use this technique to estimate both the dynamic range and the round-off noise in systems with the aforementioned control-flow structures. We show the good accuracy of our approach, which in some case studies with non-linear operators shows a 0.04 % deviation respect to the simulation-based reference values. A known drawback of the techniques based on extensions of intervals is the combinatorial explosion of terms as the size of the targeted systems grows, which leads to scalability problems. To address this issue we present a clustered noise injection technique that groups the signals in the system, introduces the noise terms in each group independently and then combines the results at the end. In this way, the number of noise sources in the system at a given time is controlled and, because of this, the combinato rial explosion is minimized. We also present a multi-way partitioning algorithm aimed at minimizing the deviation of the results due to the loss of correlation between noise terms, in order to keep the results as accurate as possible. This Ph.D. Thesis also covers the development of methodologies for word-length optimization based on Monte-Carlo simulations in reasonable times. We do so by presenting two novel techniques that explore the reduction of the execution times approaching the problem in two different ways: First, the interpolative method applies a simple but precise interpolator to estimate the sensitivity of each signal, which is later used to guide the optimization effort. Second, the incremental method revolves on the fact that, although we strictly need to guarantee a certain confidence level in the simulations for the final results of the optimization process, we can do it with more relaxed levels, which in turn implies using a considerably smaller amount of samples, in the initial stages of the process, when we are still far from the optimized solution. Through these two approaches we demonstrate that the execution time of classical greedy techniques can be accelerated by factors of up to ×240 for small/medium sized problems. Finally, this book introduces HOPLITE, an automated, flexible and modular framework for quantization that includes the implementation of the previous techniques and is provided for public access. The aim is to offer a common ground for developers and researches for prototyping and verifying new techniques for system modelling and word-length optimization easily. We describe its work flow, justifying the taken design decisions, explain its public API and we do a step-by-step demonstration of its execution. We also show, through an example, the way new extensions to the flow should be connected to the existing interfaces in order to expand and improve the capabilities of HOPLITE.
Resumo:
This article has been extracted from the results of a thesis entitled “Potential bioelectricity production of the Madrid Community Agricultural Regions based on rye and triticale biomass.” The aim was, first, to quantify the potential of rye (Secale Cereale L.) and triticale ( Triticosecale Aestivum L.) biomass in each of the Madrid Community agricultural regions, and second, to locate the most suitable areas for the installation of power plants using biomass. At least 17,339.9 t d.m. of rye and triticale would be required to satisfy the biomass needs of a 2.2 MW power plant, (considering an efficiency of 21.5%, 8,000 expected operating hours/year and a biomass LCP of 4,060 kcal/kg for both crops), and 2,577 ha would be used (which represent 2.79% of the Madrid Community fallow dry land surface). Biomass yields that could be achieved in Madrid Community using 50% of the fallow dry land surface (46,150 ha representing 5.75% of the Community area), based on rye and triticale crops, are estimated at 84,855, 74,906, 70,109, 50,791, 13,481, and 943 t annually for the Campiña, Vegas, Sur Occidental, Área Metropolitana, Lozoya-Somosierra, and Guadarrama regions. The latter represents a bioelectricity potential of 10.77, 9.5, 8.9, 6.44, 1.71, and 0.12 MW, respectively.
Resumo:
Postprint
Resumo:
Renewable energy such as biomass has given markets, including dairy farms, an effective approach to reducing the costs of sustaining a profitable business. Anaerobic digestion systems offer dairy farms a very effective way to reduce manure odor, comply with soil and water pollution regulations, manufacture compost for general market sales, produce irrigation capacity and generate on-site electricity as well as the ability to sell excess electricity back to the local utilities. This project defines anaerobic digestion technologies and practices, analyzes case studies and presents a step-by-step anaerobic digestion project startup checklist. The result is an anaerobic digestion project working guide that acts as a tool to aid dairy farmers in their own potential anaerobic digestion project.
Resumo:
Exercises of application of the systematic procedure to derive linear inequalities for logic expressions (Ejercicios de aplicación del método sistemático de obtención de restricciones lineales para expresiones lógicas).
Resumo:
The main directions in food packaging research are targeted toward improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant, and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.
Resumo:
The lower urinary tract is one of the most complex biological systems of the human body as it involved hydrodynamic properties of urine and muscle. Moreover, its complexity is increased to be managed by voluntary and involuntary neural systems. In this paper, a mathematical model of the lower urinary tract it is proposed as a preliminary study to better understand its functioning. Furthermore, another goal of that mathematical model proposal is to provide a basis for developing artificial control systems. Lower urinary tract is comprised of two interacting systems: the mechanical system and the neural regulator. The latter has the function of controlling the mechanical system to perform the voiding process. The results of the tests reproduce experimental data with high degree of accuracy. Also, these results indicate that simulations not only with healthy patients but also of patients with dysfunctions with neurological etiology present urodynamic curves very similar to those obtained in clinical studies.
Resumo:
Information Retrieval systems normally have to work with rather heterogeneous sources, such as Web sites or documents from Optical Character Recognition tools. The correct conversion of these sources into flat text files is not a trivial task since noise may easily be introduced as a result of spelling or typeset errors. Interestingly, this is not a great drawback when the size of the corpus is sufficiently large, since redundancy helps to overcome noise problems. However, noise becomes a serious problem in restricted-domain Information Retrieval specially when the corpus is small and has little or no redundancy. This paper devises an approach which adds noise-tolerance to Information Retrieval systems. A set of experiments carried out in the agricultural domain proves the effectiveness of the approach presented.
Resumo:
In this article, a new methodology is presented to obtain representation models for a priori relation z = u(x1, x2, . . . ,xn) (1), with a known an experimental dataset zi; x1i ; x2i ; x3i ; . . . ; xni i=1;2;...;p· In this methodology, a potential energy is initially defined over each possible model for the relationship (1), what allows the application of the Lagrangian mechanics to the derived system. The solution of the Euler–Lagrange in this system allows obtaining the optimal solution according to the minimal action principle. The defined Lagrangian, corresponds to a continuous medium, where a n-dimensional finite elements model has been applied, so it is possible to get a solution for the problem solving a compatible and determined linear symmetric equation system. The computational implementation of the methodology has resulted in an improvement in the process of get representation models obtained and published previously by the authors.