943 resultados para Aggregate uncertainty


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both in industry and research, the quality control of micrometric manufactured parts is based on the measurement of parameters whose traceability is sometimes difficult to guarantee. In some of these parts, the confocal microscopy shows great aptitudes to characterize a measurand qualitatively and quantitatively. The confocal microscopy allows the acquisition of 2D and 3D images that are easily manipulated. Nowadays, this equipment is manufactured by many different brands, each of them claiming a resolution probably not in accord to their real performance. The Laser Center (Technical University of Madrid) has a confocal microscope to verify the dimensions of the micro mechanizing in their own research projects. The present study pretends to confirm that the magnitudes obtained are true and reliable. To achieve this, a methodology for confocal microscope calibration is proposed, as well as an experimental phase for dimensionally valuing the equipment by 4 different standard positions, with its seven magnifications and the six objective lenses that the equipment currently has, in the x–y and z axis. From the results the uncertainty will be estimated along with an effect analysis of the different magnifications in each of the objective lenses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of the interference modes has an increasing application, especially in the field of optical biosensors. In this type of sensors, the displacement Δν of the interference modes of the transduction signal is observed when a particular biological agent is placed over the biosensor. In order to measure this displacement, the position of a maximum (or a minimum) of the signal must be detected before and after placing the agent over the sensor. A parameter of great importance for this kind of sensors is the period Pν of the signal, which is inversely proportional to the optical thickness h0 of the sensor in the absence of the biological agent. The increase of this period improves the sensitivity of the sensor but it worsens the detection of the maximum. In this paper, authors analyze the propagation of uncertainties in these sensors when using least squares techniques for the detection of the maxima (or minima) of the signal. Techniques described in supplement 2 of the ISO-GUM Guide are used. The result of the analysis allows a metrological educated answer to the question of which is the optimal period Pν of the signal. El análisis del comportamiento de los modos de interferencia tiene una aplicación cada vez más amplia, especialmente en el campo de los biosensores ópticos. En este tipo de sensores se observa el desplazamiento Δν de los modos de interferencia de la señal de transducción al reconocer un de-terminado agente biológico. Para medir ese desplazamiento se debe detectar la posición de un máximo o mínimo de la señal antes y después de dicho desplazamiento. En este tipo de biosensores un parámetro de gran importancia es el periodo Pν de la señal el cual es inversamente proporcional al espesor óptico h0 del sensor en ausencia de agente biológico. El aumento de dicho periodo mejora la sensibilidad del sensor pero parece dificultar la detección del mínimo o máximo. Por tanto, su efecto sobre la incertidumbre del resultado de la medida presenta dos efectos contrapuestos: la mejora de la sensibilidad frente a la dificultad creciente en la detección del mínimo ó máximo. En este trabajo, los autores analizan la propagación de incertidumbres en estos sensores utilizando herramientas de ajuste por MM.CC. para la detección de los mínimos o máximos de la señal y técnicas de propagación de incertidumbres descritas en el suplemento 2 de la Guía ISO-GUM. El resultado del análisis permite dar una respuesta, justificada desde el punto de vista metrológico, de en que condiciones es conveniente o no aumentar el periodo Pν de la señal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El autor ha trabajado como parte del equipo de investigación en mediciones de viento en el Centro Nacional de Energías Renovables (CENER), España, en cooperación con la Universidad Politécnica de Madrid y la Universidad Técnica de Dinamarca. El presente reporte recapitula el trabajo de investigación realizado durante los últimos 4.5 años en el estudio de las fuentes de error de los sistemas de medición remota de viento, basados en la tecnología lidar, enfocado al error causado por los efectos del terreno complejo. Este trabajo corresponde a una tarea del paquete de trabajo dedicado al estudio de sistemas remotos de medición de viento, perteneciente al proyecto de intestigación europeo del 7mo programa marco WAUDIT. Adicionalmente, los datos de viento reales han sido obtenidos durante las campañas de medición en terreno llano y terreno complejo, pertenecientes al también proyecto de intestigación europeo del 7mo programa marco SAFEWIND. El principal objetivo de este trabajo de investigación es determinar los efectos del terreno complejo en el error de medición de la velocidad del viento obtenida con los sistemas de medición remota lidar. Con este conocimiento, es posible proponer una metodología de corrección del error de las mediciones del lidar. Esta metodología está basada en la estimación de las variaciones del campo de viento no uniforme dentro del volumen de medición del lidar. Las variaciones promedio del campo de viento son predichas a partir de los resultados de las simulaciones computacionales de viento RANS, realizadas para el parque experimental de Alaiz. La metodología de corrección es verificada con los resultados de las simulaciones RANS y validadas con las mediciones reales adquiridas en la campaña de medición en terreno complejo. Al inicio de este reporte, el marco teórico describiendo el principio de medición de la tecnología lidar utilizada, es presentado con el fin de familiarizar al lector con los principales conceptos a utilizar a lo largo de este trabajo. Posteriormente, el estado del arte es presentado en donde se describe los avances realizados en el desarrollo de la la tecnología lidar aplicados al sector de la energía eólica. En la parte experimental de este trabajo de investigación se ha estudiado los datos adquiridos durante las dos campañas de medición realizadas. Estas campañas has sido realizadas en terreno llano y complejo, con el fin de complementar los conocimiento adquiridos en casa una de ellas y poder comparar los efectos del terreno en las mediciones de viento realizadas con sistemas remotos lidar. La primer campaña experimental se desarrollo en terreno llano, en el parque de ensayos de aerogeneradores H0vs0re, propiedad de DTU Wind Energy (anteriormente Ris0). La segunda campaña experimental se llevó a cabo en el parque de ensayos de aerogeneradores Alaiz, propiedad de CENER. Exactamente los mismos dos equipos lidar fueron utilizados en estas campañas, haciendo de estos experimentos altamente relevantes en el contexto de evaluación del recurso eólico. Un equipo lidar está basado en tecnología de onda continua, mientras que el otro está basado en tecnología de onda pulsada. La velocidad del viento fue medida, además de con los equipos lidar, con anemómetros de cazoletas, veletas y anemómetros verticales, instalados en mástiles meteorológicos. Los sensores del mástil meteorológico son considerados como las mediciones de referencia en el presente estudio. En primera instancia, se han analizado los promedios diez minútales de las medidas de viento. El objetivo es identificar las principales fuentes de error en las mediciones de los equipos lidar causadas por diferentes condiciones atmosféricas y por el flujo no uniforme de viento causado por el terreno complejo. El error del lidar ha sido estudiado como función de varias propiedades estadísticas del viento, como lo son el ángulo vertical de inclinación, la intensidad de turbulencia, la velocidad vertical, la estabilidad atmosférica y las características del terreno. El propósito es usar este conocimiento con el fin de definir criterios de filtrado de datos. Seguidamente, se propone una metodología para corregir el error del lidar causado por el campo de viento no uniforme, producido por la presencia de terreno complejo. Esta metodología está basada en el análisis matemático inicial sobre el proceso de cálculo de la velocidad de viento por los equipos lidar de onda continua. La metodología de corrección propuesta hace uso de las variaciones de viento calculadas a partir de las simulaciones RANS realizadas para el parque experimental de Alaiz. Una ventaja importante que presenta esta metodología es que las propiedades el campo de viento real, presentes en las mediciones instantáneas del lidar de onda continua, puede dar paso a análisis adicionales como parte del trabajo a futuro. Dentro del marco del proyecto, el trabajo diario se realizó en las instalaciones de CENER, con supervisión cercana de la UPM, incluyendo una estancia de 1.5 meses en la universidad. Durante esta estancia, se definió el análisis matemático de las mediciones de viento realizadas por el equipo lidar de onda continua. Adicionalmente, los efectos del campo de viento no uniforme sobre el error de medición del lidar fueron analíticamente definidos, después de asumir algunas simplificaciones. Adicionalmente, durante la etapa inicial de este proyecto se desarrollo una importante trabajo de cooperación con DTU Wind Energy. Gracias a esto, el autor realizó una estancia de 1.5 meses en Dinamarca. Durante esta estancia, el autor realizó una visita a la campaña de medición en terreno llano con el fin de aprender los aspectos básicos del diseño de campañas de medidas experimentales, el estudio del terreno y los alrededores y familiarizarse con la instrumentación del mástil meteorológico, el sistema de adquisición y almacenamiento de datos, así como de el estudio y reporte del análisis de mediciones. ABSTRACT The present report summarizes the research work performed during last 4.5 years of investigation on the sources of lidar bias due to complex terrain. This work corresponds to one task of the remote sensing work package, belonging to the FP7 WAUDIT project. Furthermore, the field data from the wind velocity measurement campaigns of the FP7 SafeWind project have been used in this report. The main objective of this research work is to determine the terrain effects on the lidar bias in the measured wind velocity. With this knowledge, it is possible to propose a lidar bias correction methodology. This methodology is based on an estimation of the wind field variations within the lidar scan volume. The wind field variations are calculated from RANS simulations performed from the Alaiz test site. The methodology is validated against real scale measurements recorded during an eight month measurement campaign at the Alaiz test site. Firstly, the mathematical framework of the lidar sensing principle is introduced and an overview of the state of the art is presented. The experimental part includes the study of two different, but complementary experiments. The first experiment was a measurement campaign performed in flat terrain, at DTU Wind Energy H0vs0re test site, while the second experiment was performed in complex terrain at CENER Alaiz test site. Exactly the same two lidar devices, based on continuous wave and pulsed wave systems, have been used in the two consecutive measurement campaigns, making this a relevant experiment in the context of wind resource assessment. The wind velocity was sensed by the lidars and standard cup anemometry and wind vanes (installed on a met mast). The met mast sensors are considered as the reference wind velocity measurements. The first analysis of the experimental data is dedicated to identify the main sources of lidar bias present in the 10 minute average values. The purpose is to identify the bias magnitude introduced by different atmospheric conditions and by the non-uniform wind flow resultant of the terrain irregularities. The lidar bias as function of several statistical properties of the wind flow like the tilt angle, turbulence intensity, vertical velocity, atmospheric stability and the terrain characteristics have been studied. The aim of this exercise is to use this knowledge in order to define useful lidar bias data filters. Then, a methodology to correct the lidar bias caused by non-uniform wind flow is proposed, based on the initial mathematical analysis of the lidar measurements. The proposed lidar bias correction methodology has been developed focusing on the the continuous wave lidar system. In a last step, the proposed lidar bias correction methodology is validated with the data of the complex terrain measurement campaign. The methodology makes use of the wind field variations obtained from the RANS analysis. The results are presented and discussed. The advantage of this methodology is that the wind field properties at the Alaiz test site can be studied with more detail, based on the instantaneous measurements of the CW lidar. Within the project framework, the daily basis work has been done at CENER, with close guidance and support from the UPM, including an exchange period of 1.5 months. During this exchange period, the mathematical analysis of the lidar sensing of the wind velocity was defined. Furthermore, the effects of non-uniform wind fields on the lidar bias were analytically defined, after making some assumptions for the sake of simplification. Moreover, there has been an important cooperation with DTU Wind Energy, where a secondment period of 1.5 months has been done as well. During the secondment period at DTU Wind Energy, an important introductory learning has taken place. The learned aspects include the design of an experimental measurement campaign in flat terrain, the site assessment study of obstacles and terrain conditions, the data acquisition and processing, as well as the study and reporting of the measurement analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Interneuron classification is an important and long-debated topic in neuroscience. A recent study provided a data set of digitally reconstructed interneurons classified by 42 leading neuroscientists according to a pragmatic classification scheme composed of five categorical variables, namely, of the interneuron type and four features of axonal morphology. From this data set we now learned a model which can classify interneurons, on the basis of their axonal morphometric parameters, into these five descriptive variables simultaneously. Because of differences in opinion among the neuroscientists, especially regarding neuronal type, for many interneurons we lacked a unique, agreed-upon classification, which we could use to guide model learning. Instead, we guided model learning with a probability distribution over the neuronal type and the axonal features, obtained, for each interneuron, from the neuroscientists’ classification choices. We conveniently encoded such probability distributions with Bayesian networks, calling them label Bayesian networks (LBNs), and developed a method to predict them. This method predicts an LBN by forming a probabilistic consensus among the LBNs of the interneurons most similar to the one being classified. We used 18 axonal morphometric parameters as predictor variables, 13 of which we introduce in this paper as quantitative counterparts to the categorical axonal features. We were able to accurately predict interneuronal LBNs. Furthermore, when extracting crisp (i.e., non-probabilistic) predictions from the predicted LBNs, our method outperformed related work on interneuron classification. Our results indicate that our method is adequate for multi-dimensional classification of interneurons with probabilistic labels. Moreover, the introduced morphometric parameters are good predictors of interneuron type and the four features of axonal morphology and thus may serve as objective counterparts to the subjective, categorical axonal features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interneuron classification is an important and long-debated topic in neuroscience. A recent study provided a data set of digitally reconstructed interneurons classified by 42 leading neuroscientists according to a pragmatic classification scheme composed of five categorical variables, namely, of the interneuron type and four features of axonal morphology. From this data set we now learned a model which can classify interneurons, on the basis of their axonal morphometric parameters, into these five descriptive variables simultaneously. Because of differences in opinion among the neuroscientists, especially regarding neuronal type, for many interneurons we lacked a unique, agreed-upon classification, which we could use to guide model learning. Instead, we guided model learning with a probability distribution over the neuronal type and the axonal features, obtained, for each interneuron, from the neuroscientists’ classification choices. We conveniently encoded such probability distributions with Bayesian networks, calling them label Bayesian networks (LBNs), and developed a method to predict them. This method predicts an LBN by forming a probabilistic consensus among the LBNs of the interneurons most similar to the one being classified. We used 18 axonal morphometric parameters as predictor variables, 13 of which we introduce in this paper as quantitative counterparts to the categorical axonal features. We were able to accurately predict interneuronal LBNs. Furthermore, when extracting crisp (i.e., non-probabilistic) predictions from the predicted LBNs, our method outperformed related work on interneuron classification. Our results indicate that our method is adequate for multi-dimensional classification of interneurons with probabilistic labels. Moreover, the introduced morphometric parameters are good predictors of interneuron type and the four features of axonal morphology and thus may serve as objective counterparts to the subjective, categorical axonal features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evolutionary algorithms are suitable to solve damage identification problems in a multiobjective context. However, the performance of these methods can deteriorate quickly with increasing noise intensities originating numerous uncertainties. In this work, a statistic structural damage detection method formulated in a multiobjective context is proposed, taking into account the uncertainties existing. The presented method is verified by a number of simulated damage scenarios. The effects of noise on damage detection are investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The operating theatres are the engine of the hospitals; proper management of the operating rooms and its staff represents a great challenge for managers and its results impact directly in the budget of the hospital. This work presents a MILP model for the efficient schedule of multiple surgeries in Operating Rooms (ORs) during a working day. This model considers multiple surgeons and ORs and different types of surgeries. Stochastic strategies are also implemented for taking into account the uncertain in surgery durations (pre-incision, incision, post-incision times). In addition, a heuristic-based methods and a MILP decomposition approach is proposed for solving large-scale ORs scheduling problems in computational efficient way. All these computer-aided strategies has been implemented in AIMMS, as an advanced modeling and optimization software, developing a user friendly solution tool for the operating room management under uncertainty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We define a capacity reserve model to dimension passenger car service installations according to the demographic distribution of the area to be serviced by using hospital?s emergency room analogies. Usually, service facilities are designed applying empirical methods, but customers arrive under uncertain conditions not included in the original estimations, and there is a gap between customer?s real demand and the service?s capacity. Our research establishes a valid methodology and covers the absence of recent researches and the lack of statistical techniques implementation, integrating demand uncertainty in a unique model built in stages by implementing ARIMA forecasting, queuing theory, and Monte Carlo simulation to optimize the service capacity and occupancy, minimizing the implicit cost of the capacity that must be reserved to service unexpected customers. Our model has proved to be a useful tool for optimal decision making under uncertainty integrating the prediction of the cost implicit in the reserve capacity to serve unexpected demand and defining a set of new process indicators, such us capacity, occupancy, and cost of capacity reserve never studied before. The new indicators are intended to optimize the service operation. This set of new indicators could be implemented in the information systems used in the passenger car services.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo de esta investigación consiste en definir un modelo de reserva de capacidad, por analogías con emergencias hospitalarias, que pueda ser implementado en el sector de servicios. Este está específicamente enfocado a su aplicación en talleres de servicio de automóviles. Nuestra investigación incorpora la incertidumbre de la demanda en un modelo singular diseñado en etapas que agrupa técnicas ARIMA, teoría de colas y simulación Monte Carlo para definir los conceptos de capacidad y ocupación de servicio, que serán utilizados para minimizar el coste implícito de la reserva capacidad necesaria para atender a clientes que carecen de cita previa. Habitualmente, las compañías automovilísticas estiman la capacidad de sus instalaciones de servicio empíricamente, pero los clientes pueden llegar bajo condiciones de incertidumbre que no se tienen en cuenta en dichas estimaciones, por lo que existe una diferencia entre lo que el cliente realmente demanda y la capacidad que ofrece el servicio. Nuestro enfoque define una metodología válida para el sector automovilístico que cubre la ausencia genérica de investigaciones recientes y la habitual falta de aplicación de técnicas estadísticas en el sector. La equivalencia con la gestión de urgencias hospitalarias se ha validado a lo largo de la investigación en la se definen nuevos indicadores de proceso (KPIs) Tal y como hacen los hospitales, aplicamos modelos estocásticos para dimensionar las instalaciones de servicio de acuerdo con la distribución demográfica del área de influencia. El modelo final propuesto integra la predicción del coste implícito en la reserva de capacidad para atender la demanda no prevista. Asimismo, se ha desarrollado un código en Matlab que puede integrarse como un módulo adicional a los sistemas de información (DMS) que se usan actualmente en el sector, con el fin de emplear los nuevos indicadores de proceso definidos en el modelo. Los resultados principales del modelo son nuevos indicadores de servicio, tales como la capacidad, ocupación y coste de reserva de capacidad, que nunca antes han sido objeto de estudio en la industria automovilística, y que están orientados a gestionar la operativa del servicio. ABSTRACT Our aim is to define a Capacity Reserve model to be implemented in the service sector by hospital's emergency room (ER) analogies, with a practical approach to passenger car services. A stochastic model has been implemented using R and a Monte Carlo simulation code written in Matlab and has proved a very useful tool for optimal decision making under uncertainty. The research integrates demand uncertainty in a unique model which is built in stages by implementing ARIMA forecasting, Queuing Theory and a Monte Carlo simulation to define the concepts of service capacity and occupancy, minimizing the implicit cost of the capacity that must be reserved to service unexpected customers. Usually, passenger car companies estimate their service facilities capacity using empirical methods, but customers arrive under uncertain conditions not included in the estimations. Thus, there is a gap between customer’s real demand and the dealer’s capacity. This research sets a valid methodology for the passenger car industry to cover the generic absence of recent researches and the generic lack of statistical techniques implementation. The hospital’s emergency room (ER) equalization has been confirmed to be valid for the passenger car industry and new process indicators have been defined to support the study. As hospitals do, we aim to apply stochastic models to dimension installations according to the demographic distribution of the area to be serviced. The proposed model integrates the prediction of the cost implicit in the reserve capacity to serve unexpected demand. The Matlab code could be implemented as part of the existing information technology systems (ITs) to support the existing service management tools, creating a set of new process indicators. Main model outputs are new indicators, such us Capacity, Occupancy and Cost of Capacity Reserve, never studied in the passenger car service industry before, and intended to manage the service operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta tesis doctoral presenta un procedimiento integral de control de calidad en centrales fotovoltaicas, que comprende desde la fase inicial de estimación de las expectativas de producción hasta la vigilancia del funcionamiento de la instalación una vez en operación, y que permite reducir la incertidumbre asociada su comportamiento y aumentar su fiabilidad a largo plazo, optimizando su funcionamiento. La coyuntura de la tecnología fotovoltaica ha evolucionado enormemente en los últimos años, haciendo que las centrales fotovoltaicas sean capaces de producir energía a unos precios totalmente competitivos en relación con otras fuentes de energía. Esto hace que aumente la exigencia sobre el funcionamiento y la fiabilidad de estas instalaciones. Para cumplir con dicha exigencia, es necesaria la adecuación de los procedimientos de control de calidad aplicados, así como el desarrollo de nuevos métodos que deriven en un conocimiento más completo del estado de las centrales, y que permitan mantener la vigilancia sobre las mismas a lo largo del tiempo. Además, los ajustados márgenes de explotación actuales requieren que durante la fase de diseño se disponga de métodos de estimación de la producción que comporten la menor incertidumbre posible. La propuesta de control de calidad presentada en este trabajo parte de protocolos anteriores orientados a la fase de puesta en marcha de una instalación fotovoltaica, y las complementa con métodos aplicables a la fase de operación, prestando especial atención a los principales problemas que aparecen en las centrales a lo largo de su vida útil (puntos calientes, impacto de la suciedad, envejecimiento…). Además, incorpora un protocolo de vigilancia y análisis del funcionamiento de las instalaciones a partir de sus datos de monitorización, que incluye desde la comprobación de la validez de los propios datos registrados hasta la detección y el diagnóstico de fallos, y que permite un conocimiento automatizado y detallado de las plantas. Dicho procedimiento está orientado a facilitar las tareas de operación y mantenimiento, de manera que se garantice una alta disponibilidad de funcionamiento de la instalación. De vuelta a la fase inicial de cálculo de las expectativas de producción, se utilizan los datos registrados en las centrales para llevar a cabo una mejora de los métodos de estimación de la radiación, que es la componente que más incertidumbre añade al proceso de modelado. El desarrollo y la aplicación de este procedimiento de control de calidad se han llevado a cabo en 39 grandes centrales fotovoltaicas, que totalizan una potencia de 250 MW, distribuidas por varios países de Europa y América Latina. ABSTRACT This thesis presents a comprehensive quality control procedure to be applied in photovoltaic plants, which covers from the initial phase of energy production estimation to the monitoring of the installation performance, once it is in operation. This protocol allows reducing the uncertainty associated to the photovoltaic plants behaviour and increases their long term reliability, therefore optimizing their performance. The situation of photovoltaic technology has drastically evolved in recent years, making photovoltaic plants capable of producing energy at fully competitive prices, in relation to other energy sources. This fact increases the requirements on the performance and reliability of these facilities. To meet this demand, it is necessary to adapt the quality control procedures and to develop new methods able to provide a more complete knowledge of the state of health of the plants, and able to maintain surveillance on them over time. In addition, the current meagre margins in which these installations operate require procedures capable of estimating energy production with the lower possible uncertainty during the design phase. The quality control procedure presented in this work starts from previous protocols oriented to the commissioning phase of a photovoltaic system, and complete them with procedures for the operation phase, paying particular attention to the major problems that arise in photovoltaic plants during their lifetime (hot spots, dust impact, ageing...). It also incorporates a protocol to control and analyse the installation performance directly from its monitoring data, which comprises from checking the validity of the recorded data itself to the detection and diagnosis of failures, and which allows an automated and detailed knowledge of the PV plant performance that can be oriented to facilitate the operation and maintenance of the installation, so as to ensure a high operation availability of the system. Back to the initial stage of calculating production expectations, the data recorded in the photovoltaic plants is used to improved methods for estimating the incident irradiation, which is the component that adds more uncertainty to the modelling process. The development and implementation of the presented quality control procedure has been carried out in 39 large photovoltaic plants, with a total power of 250 MW, located in different European and Latin-American countries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Air pollution abatement policies must be based on quantitative information on current and future emissions of pollutants. As emission projections uncertainties are inevitable and traditional statistical treatments of uncertainty are highly time/resources consuming, a simplified methodology for nonstatistical uncertainty estimation based on sensitivity analysis is presented in this work. The methodology was applied to the “with measures” scenario for Spain, concretely over the 12 highest emitting sectors regarding greenhouse gas and air pollutants emissions. Examples of methodology application for two important sectors (power plants, and agriculture and livestock) are shown and explained in depth. Uncertainty bands were obtained up to 2020 by modifying the driving factors of the 12 selected sectors and the methodology was tested against a recomputed emission trend in a low economic-growth perspective and official figures for 2010, showing a very good performance. Implications: A solid understanding and quantification of uncertainties related to atmospheric emission inventories and projections provide useful information for policy negotiations. However, as many of those uncertainties are irreducible, there is an interest on how they could be managed in order to derive robust policy conclusions. Taking this into account, a method developed to use sensitivity analysis as a source of information to derive nonstatistical uncertainty bands for emission projections is presented and applied to Spain. This method simplifies uncertainty assessment and allows other countries to take advantage of their sensitivity analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aggregates provide physical microenvironments for microorganisms, the vital actors of soil systems, and thus play a major role as both, an arena and a product of soil carbon stabilization and dynamics. The surface of an aggregate is what enables exchange of the materials and air and water fluxes between aggregate exterior and interior regions. We made use of 3D images from X-ray CT of aggregates and mathematical morphology to provide an exhaustive quantitative description of soil aggregate morphology that includes both intra-aggregate pore space structure and aggregate surface features. First, the evolution of Minkowski functionals (i.e. volume, boundary surface, curvature and connectivity) for successive dilations of the solid part of aggregates was investigated to quantify its 3D geometrical features. Second, the inner pore space was considered as the object of interest. We devised procedures (a) to define the ends of the accessible pores that are connected to the aggregate surface and (b) to separate accessible and inaccessible porosity. Geometrical Minkowski functionals of the intra-aggregate pore space provide the exhaustive characterization of the inner structure of the aggregates. Aggregates collected from two different soil treatments were analyzed to explore the utility of these morphological tools in capturing the impact on their morphology of two different soil managements, i.e. conventional tillage management, and native succession vegetation treatment. The quantitative tools of mathematical morphology distinguished differences in patterns of aggregate structure associated to the different soil managements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies point to climate change being one of the long-term drivers of agricultural market uncertainty. To advance in the understanding of the influence of climate change on future agricultural market developments, we compare a reference scenario for 2030 with alternative simulation scenarios that differ regarding: (1) emission scenarios; (2) climate projections; and (3) the consideration of carbon fertilization effects. For each simulation scenario, the CAPRI model provides global and EU-wide impacts of climate change on agricultural markets. Results show that climate change would considerably affect agrifood markets up to 2030. Nevertheless, market-driven adaptation strategies (production intensification, trade adjustments) would soften the impact of yield shocks on supply and demand. As a result, regional changes in production would be lower than foreseen by other studies focused on supply effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta dissertação visa deslumbrar uma análise macroeconômica do Brasil, especialmente no que se refere à relação dos índices mensais dos volumes das exportações e das importações com os volumes mensais do PIB, da Taxa SELIC e as Taxas de Câmbio, conforme dados coletados no período de janeiro de 2004 a dezembro de 2014, através de pesquisa literária referente aos históricos sobre cada conceito envolvido no âmbito da macroeconomia das varáveis estudadas. Foi realizado um estudo de caso embasado em dados de sites governamentais, no período delimitado, empregando-se o método de regressão linear, com base na Teoria da correlação de Pearson, demonstrando os resultados obtidos no período do estudo para as varáveis estudadas. Desta maneira, conseguiu-se estudar e analisar como as variáveis dependentes (resposta): volume das exportações e volume das importações estão relacionadas com as varáveis independentes (explicativas): PIB, Taxa Selic e taxa de Câmbio. Os resultados apurados no presente estudo permitem identificar que existe correlação moderada e negativa, quando analisadas a Taxa Selic e a Taxa de Câmbio com os volumes das exportações e das importações, enquanto o PIB apresenta correlação forte e positiva na análise com os volumes das exportações e das importações

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although humanity depends on the continued, aggregate functioning of natural ecosystems, few studies have explored the impact of community structure on the stability of aggregate community properties. Here we derive the stability of the aggregate property of community biomass as a function of species’ competition coefficients for a two-species model. The model predicts that the stability of community biomass is relatively independent of the magnitude of the interaction strengths. Instead, the degree of asymmetry of the interactions appears to be key to community stability.