947 resultados para Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E)
Resumo:
Purpose : the aim of this study was to evaluate the effect of nozzle angle and tip diameter on the cutting efficiency of an air abrasion system. Materials and Methods: Thirty-six extracted human third molars were air-abraded with the PrepStar microabrasion machine using a handpiece with either 80degrees or 45degrees nozzle angles with 0.38 or 0.48 nun tip orifice diameters. The following parameters were held constant: abrasive particle size (27 mum), air pressure (80 psi), distance (2 mm.) and duration (15 seconds). The cutting efficiency was compared using enamel, dentin and cementum substrates. Width and depth of the cutting patterns were analyzed and measured using scanning electron micrographs. Results: Statistical analysis using three-way ANOVA and Duncan's Multiple Range test revealed that the width of the cuts was significantly greater when the cavities were prepared using the 45degrees nozzle angle. Significantly deeper cavities were produced with the 80degrees nozzle angle. The tip orifice of the nozzle influenced the cutting efficiency in softer substrates, dentin and cementum. Precise removal of hard tissue is best accomplished using the 80degrees angle nozzle tips for all types of tooth surfaces, enamel, dentin and cementum.
Resumo:
In this paper, the influence on optical properties of alkali halides such as CsCl in a covalent glassy matrix has been investigated. Chalcogenide glasses belonging to the (GeS2)-(Ga2S3)-CsCI system with high ratio of CsCl present an entire transparency in the visible range. These glasses maintain good transmission up to 12 mu m. Furthermore, the thermo-mechanical properties and the glass hygroscopicity have been investigated as function of the CsCl amount. This new generation of glasses presents a great interest for optical application. They could be used both for passive applications (multi-spectral imaging) and active applications for rare-earth doping due to their good transmission in the visible range, increasing optical pumping possibilities.
Resumo:
In the present work is analyzed the contribution of the Moon on the collisional process of the Earth with asteroids (NEOs). The dynamical system adopted is the restricted four-body problem Sun-Earth-Moon-particle. Using a simple analytical approach one can verify that, the orbit of an object can be significantly affected by the Moon's gravitational field when their relative velocity is smaller than 5 km/s. Therefore, the present work is based on hypothetical asteroids whose velocities relative to Moon are of the order of 1 km/s. In fact, there are several real objects (NEOs) with such velocities at the point they cross the Earth's orbit. The net results obtained indicate that the Moon helps to avoid collisions (2.6%) more than it contributes to extra collisions (0.6%). (C) 2003 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
The planar, circular, restricted three-body problem predicts the existence of periodic orbits around the Lagrangian equilibrium point L1. Considering the Earth-lunar-probe system, some of these orbits pass very close to the surfaces of the Earth and the Moon. These characteristics make it possible for these orbits, in spite of their instability, to be used in transfer maneuvers between Earth and lunar parking orbits. The main goal of this paper is to explore this scenario, adopting a more complex and realistic dynamical system, the four-body problem Sun-Earth-Moon-probe. We defined and investigated a set of paths, derived from the orbits around L1, which are capable of achieving transfer between low-altitude Earth (LEO) and lunar orbits, including high-inclination lunar orbits, at a low cost and with flight time between 13 and 15 days.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cerium carbonate hydroxide (orthorhombic Ce(OH)CO3) hexagonal-shaped microplates were synthesized by a simple and fast microwave-hydrothermal method at 150 degrees C for 30 min. Cerium nitrate, urea and cetyltrimethylammonium bromide were used as precursors. Ceria (cubic CeO2) rhombus-shape was obtained by a thermal decomposition oxidation process at 500 degrees C for 1 h using as- synthesized Ce(OH)CO3. The products were characterized by X-ray powder diffraction, field-emission scanning electron microscopy, thermogravimetric analysis and Fourier transformed infrared spectroscopy. The use of microwave-hydrothermal method allowed to obtain cerium compounds at low temperature and shorter time compared to other synthesis methods. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Tin oxide (SnO) powders were obtained by the microwave-assisted hydrothermal synthesis technique using SnCl2 center dot 2H(2)O as a precursor. By changing the hydrothermal processing time, temperature, the type of mineralizing agent (NaOH, KOH or NH4 OH) and its concentration, SnO crystals having different sizes and morphologies could be achieved. The powders were characterized by X-ray diffraction (X-ray), Field Emission Scanning Electron Microscopy (FE-SEM), High Resolution Transmission Electron Microscopy (HR-TEM) and Selected Area Electron Diffraction (SAED). The results showed that plate-like form is the characteristic morphology of growth and the TEM analyses indicate the growth direction as (200). (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)