954 resultados para Actium, Battle of, 31 B.C.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mammalian hematopoietic stem cell (HSC) commitment and differentiation into lymphoid lineage cells proceed through a series of developmentally restricted progenitor compartments. A complete understanding of this process, and how it differs from HSC commitment and differentiation into cells of the myeloid/erythroid lineages, requires the development of model systems that support HSC commitment to the lymphoid lineages. We now describe a human bone marrow stromal cell culture that preferentially supports commitment and differentiation of human HSC to CD19+ B-lineage cells. Fluorescence activated cell sorterpurified CD34++/lineage-cells were isolated from fetal bone marrow and cultured on human fetal bone marrow stromal cells in serum-free conditions containing no exogenous cytokines. Over a period of 3 weeks, CD34++/lineage- cells underwent commitment, differentiation, and expansion into the B lineage. Progressive changes included: loss of CD34, acquisition of and graded increases in the level of cell surface CD19, and appearance of immature B cells expressing mu/kappa or mu/lambda cell surface Ig receptors. The tempo and phenotype of B-cell development was not influenced by the addition of IL-7 (10 ng/ml), or by the addition of goat anti-IL-7 neutralizing antibody. These results indicate a profound difference between mouse and human in the requirement for IL-7 in normal B-cell development, and provide an experimental system to identify and characterize human bone marrow stromal cell-derived molecules crucial for human B lymphopoiesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inhibition of DNA synthesis prevents mitotic entry through the action of the S phase checkpoint. In the yeast Saccharomyces cerevisiae, an essential protein kinase, Spk1/Mec2/Rad53/Sad1, controls the coupling of S phase to mitosis. In an attempt to identify genes that genetically interact with Spk1, we have isolated a temperature-sensitive mutation, rfc5-1, that can be suppressed by overexpression of SPK1. The RFC5 gene encodes a small subunit of replication factor C complex. At the restrictive temperature, rfc5-1 mutant cells entered mitosis with unevenly separated or fragmented chromosomes, resulting in loss of viability. Thus, the rfc5 mutation defective for DNA replication is also impaired in the S phase checkpoint. Overexpression of POL30, which encodes the proliferating cell nuclear antigen, suppressed the replication defect of the rfc5 mutant but not its checkpoint defect. Taken together, these results suggested that replication factor C has a direct role in sensing the state of DNA replication and transmitting the signal to the checkpoint machinery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a cellular model of infection by the hepatitis B virus and describe how it may be used to account for two important features of the disease, namely (i) the wide variety of manifestations of infection and the age dependence thereof, and (ii) the typically long delay before the development of virus-induced liver cancer (primary hepatocellular carcinoma). The model is based on the assumption that the liver is comprised of both immature and mature hepatocytes, with these two subpopulations of cells responding contrastingly upon infection by the virus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ca2+ influx controls multiple neuronal functions including neurotransmitter release, protein phosphorylation, gene expression, and synaptic plasticity. Brain L-type Ca2+ channels, which contain either alpha 1C or alpha 1D as their pore-forming subunits, are an important source of calcium entry into neurons. Alpha 1C exists in long and short forms, which are differentially phosphorylated, and C-terminal truncation of alpha 1C increases its activity approximately 4-fold in heterologous expression systems. Although most L-type calcium channels in brain are localized in the cell body and proximal dendrites, alpha 1C subunits in the hippocampus are also present in clusters along the dendrites of neurons. Examination by electron microscopy shows that these clusters of alpha 1C are localized in the postsynaptic membrane of excitatory synapses, which are known to contain glutamate receptors. Activation of N-methyl-D-aspartate (NMDA)-specific glutamate receptors induced the conversion of the long form of alpha 1C into the short form by proteolytic removal of the C terminus. Other classes of Ca2+ channel alpha1 subunits were unaffected. This proteolytic processing reaction required extracellular calcium and was blocked by inhibitors of the calcium-activated protease calpain, indicating that calcium entry through NMDA receptors activated proteolysis of alpha1C by calpain. Purified calpain catalyzed conversion of the long form of immunopurified alpha 1C to the short form in vitro, consistent with the hypothesis that calpain is responsible for processing of alpha 1C in hippocampal neurons. Our results suggest that NMDA receptor-induced processing of the postsynaptic class C L-type Ca2+ channel may persistently increase Ca2+ influx following intense synaptic activity and may influence Ca2+-dependent processes such as protein phosphorylation, synaptic plasticity, and gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new approach of comparing protein structures that does not involve the procedure of superposition is suggested. An invariant system of coordinates for immunoglobulin molecules that is based on the geometrical symmetry inherent to the variable domain light-chain (VL)-heavy-chain (VH) complex is described. The coordinates of the Calpha atoms in 22 immunoglobulin structures are calculated in the invariant system of coordinates. We found that 76 identical positions in this Calpha framework are symmetrical about the twofold axis. Comparison of the identical positions in these molecules allows us to select 96 positions in the light chains and 87 positions in the heavy chains whose Calpha atom coordinates are approximately the same. To check whether the average coordinates of Calpha atoms in these positions complies with the stereochemical requirements, we calculated Calpha-Calpha distances. Seventy-three positions of the light chains and 72 positions of the heavy chains satisfy the Calpha-Calpha distance criterion. The Calpha atoms in these positions are used for constructing the "standard" Calpha framework of VL and VH complexes. The average coordinates of Calpha atoms are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To delineate the phospholipase C (PLC; EC 3.1.4.3) beta2 sequences involved in interactions with the beta-gamma subunits of G proteins, we prepared a number of mammalian expression plasmids encoding a series of PLC beta2 segments that span the region from the beginning of the X box to the end of the Y box. We found the sequence extending from residue Glu-435 to residue Val-641 inhibited Gbeta-gamma-mediated activation of PLC beta2 in transfected COS-7 cells. This PLC beta2 sequence also inhibited ligand-induced activation of PLC in COS-7 cells cotransfected with cDNAs encoding the complement component C5a receptor and PLC beta2 but not in cells transfected with the alpha1B-adrenergic receptor, suggesting that the PLC beta2 residues (Glu-435 to Val-641) inhibit the Gbeta-gamma-mediated but not the Galpha-mediated effect. The inhibitory effect on Gbeta-gamma-mediated activation of PLC beta2 may be the result of the interaction between Gbeta-gamma and the PLC beta2 fragment. This idea was confirmed by the observation that a fusion protein comprising these residues (Glu-435 to Val-641) of PLC beta2 and glutathione S-transferase (GST) bound to Gbeta-gamma in an in vitro binding assay. The Gbeta-gamma-binding region was further narrowed down to 62 amino acids (residues Leu-580 to Val-641) by testing fusion proteins comprising various PLC beta2 sequences and GST in the in vitro binding assay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The association of protein kinase C (PKC) with membranes was found not to be specific for phosphatidyl-L-serine (PS). In particular, a synthetic phospholipid, dansyl-phosphatidylethanolamine, proved to be fully functional in the association of PKC with lipid bilayers and in mediating the interaction of this enzyme with diacylglycerol. Dansyl-phosphatidylethanolamine was also able to activate the enzyme in a Ca2+-dependent fashion. Differences in the ability to bind and activate PKC observed for an array of anionic lipids were not larger than alterations caused by changes in acyl chain composition. Thus, although different lipids interact to different extents with PKC, there are no specific binding sites for the PS headgroup on the enzyme. We found that lipids with a greater tendency to form inverted phases increased the binding of PKC to bilayers. However, these changes in lipid structure cannot be considered separately from the miscibility of lipid components in the membrane. For pairs of lipids with similar acyl chains, the dependence on PS concentration is sigmoidal, while for dissimilar acyl chains there is much less dependence of binding on PS concentration. The results can be explained in terms of differences in the lateral distribution of components in the membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of receptor binding in the potent immunogenicity of Escherichia coli heat-labile enterotoxin B subunit (EtxB) was tested by comparing its immunogical properties with those of a receptor binding mutant, EtxB(G33D). Subcutaneous immunization of EtxB(G33D) resulted in 160-fold reduction in antibody titer compared with wild-type EtxB, whereas its oral delivery failed to provoke any detectable secretory or serum anti-B subunit responses. Moreover, the two proteins induced strikingly different effects on lymphocyte cultures in vitro. EtxB, in comparison with EtxB(G33D), caused an increase in the proportion of B cells, many of which were activated (CD25+); the complete depletion of CD8+ T cells; an increase in the activation of CD4+ T cells; and an increase in interleukin 2 and a decrease in interferon gamma. These data indicate that EtxB exerts profound effects on immune cells, suggesting that its potent immunogenicity is dependent not only on efficient receptor-mediated uptake, but also on direct receptor-mediated immunomodulation of lymphocyte subsets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using transgenic mice that replicate the hepatitis B virus (HBV) genome, we recently demonstrated that class I-restricted, hepatitis B surface antigen-specific cytotoxic T lymphocytes (CTLs) can noncytolytically eliminate HBV pregenomic and envelope RNA transcripts from the hepatocyte. We now demonstrate that the steady-state content of these viral transcripts is profoundly reduced in the nucleus and cytoplasm of CTL-activated hepatocytes, but their transcription rates are only slightly reduced. Additionally, we demonstrate that transcripts covering the HBV X coding region are resistant to downregulation by the CTL. These results imply the existence of CTL-inducible hepatocellular factors that interact with a discrete element(s) between nucleotides 3157 and 1239 within the viral pregenomic and envelope transcripts and mediate their degradation, thus converting the hepatocyte from a passive victim to an active participant in the host response to HBV infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In establishing the memory B-cell population and maintaining self-tolerance during an immune response, apoptosis mediates the removal of early, low-affinity antibody-forming cells, unselected germinal center (GC) cells, and, potentially, self-reactive B cells. To address the role of the apoptosis-signaling cell surface molecule FAS in the B-cell response to antigen, we have examined the T-cell-dependent B-cell response to the carrier-conjugated hapten (4-hydroxy-3-nitrophenyl)acetyl (NP) in lpr mice in which the fas gene is mutated. High levels of FAS were expressed on normal GC B cells but the absence of FAS did not perturb the progressive decline in numbers of either GC B cells or extrafollicular antibody-forming cells. Furthermore, the rate of formation and eventual size of the NP-specific memory B-cell population in lpr mice were normal. The accumulation of cells with affinity-enhancing mutations and the appearance of high-affinity anti-NP IgG1 antibody in the serum were also normal in lpr mice. Thus, although high levels of FAS are expressed on GC B cells, FAS is not required for GC selection or for regulation of the major antigen-specific B-cell compartments. The results suggest that the size and composition of B-cell compartments in the humoral immune response are regulated by mechanisms that do not require FAS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is known that the phospholipids of the brain cells of fish are altered during cold adaptation. In particular, the 1-monounsaturated 2-polyunsaturated phosphatidylethanolamines (PEs) increase 2- to 3-fold upon adaptation to cold. One of the most striking changes is in the 18:1/22:6 species of PE. We determined how this lipid affected the bilayer-to-hexagonal-phase transition temperature of 16:1/16:1 PE. We found that it was more effective in lowering this transition temperature than were other, less unsaturated, PE species. In addition, it was not simply the presence of the 18:1/22:6 acyl chains which caused this effect, since the 18:1/22:6 species of phosphatidylcholine had the opposite effect on this transition temperature. Zwitterionic substances that lower the bilayer-to-hexagonal-phase transition temperature often cause an increase in the activity of protein kinase C (PKC). Indeed, the 18:1/22:6 PE caused an increase in the rate of histone phosphorylation by PKC which was greater than that caused by other, less unsaturated, PEs. The 18:1/22:6 phosphatidylcholine had no effect on this enzyme. The stimulation of the activity of PKC by the 18:1/22:6 PE is a consequence of this lipid's increasing the partitioning of PKC to the membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The delta isoform of protein kinase C is phosphorylated on tyrosine in response to antigen activation of the high-affinity receptor for immunoglobulin E. While protein kinase C-delta associates with and phosphorylates this receptor, immunoprecipitation of the receptor revealed that little, if any, tyrosine-phosphorylated protein kinase C-delta is receptor associated. In vitro kinase assays with immunoprecipitated tyrosine-phosphorylated protein kinase C-delta showed that the modified enzyme had diminished activity toward the receptor gamma-chain peptide as a substrate but not toward histones or myelin basic protein peptide. We propose a model in which the tyrosine phosphorylation of protein kinase C-delta regulates the kinase specificity toward a given substrate. This may represent a general mechanism by which in vivo protein kinase activities are regulated in response to external stimuli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overexpression of phytochrome B (phyB) in transgenic Arabidopsis results in enhanced deetiolation in red light. To define domains of phyB functionally important for its regulatory activity, we performed chemical mutagenesis of a phyB-overexpressing line and screened for phenotypic revertants in red light. Four phyB-transgene-linked revertants that retain parental levels of full-length, dimeric, and spectrally normal overexpressed phyB were identified among 101 red-light-specific revertants. All carry single amino acid substitutions in the transgene-encoded phyB that reduce activity by 40- to 1000-fold compared to the nonmutagenized parent. The data indicate that the mutant molecules are fully active in photosignal perception but defective in the regulatory activity responsible for signal transfer to downstream components. All four mutations fall within a 62-residue region in the COOH-terminal domain of phyB, with two independent mutations occurring in a single amino acid, Gly-767. Accumulating evidence indicates that the identified region is a critical determinant in the regulatory function of both phyB and phyA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcium/phospholipid-dependent protein kinase (protein kinase C, PKC) has been suggested to play a role in the sensitivity of gamma-aminobutyrate type A (GABAA) receptors to ethanol. We tested a line of null mutant mice that lacks the gamma isoform of PKC (PKC gamma) to determine the role of this brain-specific isoenzyme in ethanol sensitivity. We found that the mutation reduced the amount of PKC gamma immunoreactivity in cerebellum to undetectable levels without altering the levels of the alpha, beta I, or beta II isoforms of PKC. The mutant mice display reduced sensitivity to the effects of ethanol on loss of righting reflex and hypothermia but show normal responses to flunitrazepam or pentobarbital. Likewise, GABAA receptor function of isolated brain membranes showed that the mutation abolished the action of ethanol but did not alter actions of flunitrazepam or pentobarbital. These studies show the unique interactions of ethanol with GABAA receptors and suggest protein kinase isoenzymes as possible determinants of genetic differences in response to ethanol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several lines of evidence indicate that immunoglobulin-bound prolactin found in human serum is not a conventional complex between an anti-prolactin antibody and prolactin but a different type of association of prolactin with the Fab portion of IgG heavy chains. The complex of prolactin with IgG was purified from serum by anti-human prolactin affinity chromatography and was shown to contain close to 1 mole of N epsilon-(gamma-glutamyl)lysine crosslinks per mole of complex, a characteristic feature in structures crosslinked by transglutaminase. Interestingly, the complex caused a proliferation of cells from a subset of patients with chronic lymphocytic leukemia, while it was inactive in a cell proliferation prolactin bioassay. By contrast, human prolactin stimulated the proliferation of cells in the bioassay but had no effect on the complex-responsive cells from the patients. Competition studies with prolactin and free Fc fragment of IgG demonstrated a necessity for engaging both the prolactin and the immunoglobulin receptors for proliferation. More importantly, competition for the growth response by free prolactin and IgG suggests both possible reasons for the slow growth of this neoplasm as well as avenues for control of the disease.