964 resultados para Acc Synthase
Resumo:
Tese de doutoramento, Biologia (Biotecnologia), Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
The Cappadocian variety of Ulaghátsh is unique among the Greek-speaking world in having lost the inherited preposition ‘se’. The innovation is found with both locative and allative uses and has af-ected both syntactic contexts in which ‘se’ was originally found, that is, as a simple preposition (1) and as the left-occurring member of circumpositions of the type ‘se’ + NP + spatial adverb (2). (1) a. tránse ci [to meidán] en ávʝa see.PST.3SG COMP ART.DEF.SG.ACC yard.SG.ACC COP.3 game.PL.NOM ‘he saw that in the yard is some game’ (Dawkins 1916: 348) b. ta erʝó da qardáʃa évɣan [to qonáq] ART.DEF.PL.NOM two ART.DEF.PL.NOM friend.PL.NOM ascend.PST.3PL ART.DEF.SG.ACC house.SG.ACC ‘the two friends went up to the house’ (Dawkins 1916: 354) (2) émi [ta qonáca mésa], kiríʃde [to ʝasdɯ́q píso] enter.PST.3SG ART.DEF.PL.NOM house.PL.ACC inside hide.PST.3SG. ART.DEF.SG.ACC cushion.SG.ACC behind ‘he went into the houses and hid behind the cushions’ (Dawkins 1916: 348) In this paper, we set out to provide (a) a diachronic account of the loss of ‘se’ in Asia Minor Greek, and (b) a synchronic analysis of its ramifications for the encoding of the semantic and grammatical functions it had prior to its loss. The diachronic development of ‘se’ is traced by comparing the Ulaghátsh data with those obtained from Cappadocian varieties that have neither lost it nor do they show signs of losing it and, crucially, also from varieties in which ‘se’ is in the process of being lost. The comparative analysis shows that the loss first became manifest in circumpositions in which ‘se’ was preposed to the complement to which in turn a wide range of adverbs expressing topological relations were postposed (émi sa qonáca mésa > émi ta qonáca mésa). This finding is accounted for in terms of Sinha and Kuteva’s (1995) distributed spatial semantics framework, which accepts that the elements involved in the constructions under investigation—the verb (émi), ‘se’ and the spatial adverb (mésa)—all contribute to the expression of the spatial relational meaning but with differences in weighting. Of the three, ‘eis’ made the most minimal contribution, the bulk of it being distributed over the verb and the adverb. This allowed for it to be optionally dropped from circumpositions, a stage attested in Phlo-tá Cappadocian and Silliot, and to be later completely abandoned, originally in allative and subsequently in locative contexts (earlier: évɣan so qonáq > évɣan to qonáq; later: so meidán en ávʝa > to meidán en ávʝa). The earlier loss in allative contexts is also dealt with in distributed semantics terms as verbs of motion such as έβγαν are semantically more loaded than vacuous verbs like the copula and therefore the preposition could be left out in the former context more easily than in the latter. The analysis also addresses the possibility that the loss of ‘se’ may ultimately originate in substandard forms of Medieval Greek, which according to Tachibana (1994) displayed SPATIAL ADVERB + NP constructions. Applying the semantic map model (Croft 2003, Haspelmath 2003), the synchronic analysis of the varieties that retain ‘se’ reveals that—like many other allative markers crosslinguistically—it displays a pattern of multifunctionality in expressing nine different functions (among others allative, locative, recipient, addressee, experiencer), which can be mapped against four domains, viz. the spatiotemporal, the social, the mental and the logicotextual (cf. Rice & Kabata 2007). In Ulaghátsh Cappadocian, none of these functions is overtly marked as such. In cases like (1), the intended spatial relational meaning is arrived at through the combination of the syntax and the inherent semantics of the verb and the zero-marked NP as well as from the context. In environments of the type exemplified by (2), the adverb contributes further to the correct interpretation. The analysis additionally shows that, despite the loss of ‘se’, Ulaghátsh patterns with all other Cappadocian varieties in one important aspect: Goal and Location are expressed similarly (by zero in Ulaghátsh, by ‘se’ in the other varieties) whereas Source is being kept distinct (expressed by ‘apó’ in all varieties). Goal-Location polysemy is very common across the world’s languages and, most crucially, prevails over other possible polysemies in the tripartite distinction Source—Location—Goal (Lestrade 2010, Nikitina 2009). Taking into account this empirical observation, our findings suggest that the reor-anisation of spatial systems can have a local effect—in our case the loss of a member of the prepositional paradigm—but will keep the original global picture intact, thus conforming to crosslinguistically robust tendencies. References Croft, W. 2001. Radical Construction Grammar: Syntactic Theory in Typological Perspective. Oxford: Oxford University Press. Dawkins, R. M. 1916. Modern Greek in Asia Minor: A Study of the Dialects of Sílli, Cappadocia and Phárasa with Grammar, Texts, Translations and Glossary. Cambridge: Cambridge University Press. Haspelmath, M. 2003. The geometry of grammatical meaning: semantic maps and cross-linguistic comparison. In M. Tomasello (Ed.), The New Psychology of Language, Volume 2. New York: Erlbaum, 211–243. Lestrade, S. 2010. The Space of Case. Doctoral dissertation. Radboud University Nijmegen. Nikitina, T. 2009. Subcategorization pattern and lexical meaning of motion verbs: a study of the source/goal ambiguity. Linguistics 47, 1113–1141. Rice, S. & K. Kabata. 2007. Cross-linguistic grammaticalization patterns of the allative. Linguistic Typology 11, 451–514. Sinha, C. & T. Kuteva. 1995. Distributed spatial semantics. Nordic Journal of Linguistics 18:2, 167–199. Tachibana, T. 1994. Syntactic structure of spatial expressions in the “Late Byzantine Prose Alexander Romance”. Propylaia 6, 35–51.
Resumo:
Thesis submitted in the fulfilment of the requirements for the Degree of Master in Electronic and Telecomunications Engineering
Resumo:
Glioma is the most frequent form of malignant brain tumor in the adults and childhood. There is a global tendency toward a higher incidence of gliomas in highly developed and industrialized countries. Simultaneously obesity is reaching epidemic proportions in such developed countries. It has been highly accepted that obesity may play an important role in the biology of several types of cancer. We have developed an in vitro method for the understanding of the influence of obesity on glioma mouse cells (Gl261). 3T3-L1 mouse pre-adipocytes were induced to the maturity. The conditioned medium was harvested and used into the Gl261 cultures. Using two-dimension electrophoresis it was analyzed the proteome content of Gl261 in the presence of conditioned medium (CGl) and in its absence (NCGl). The differently expressed spots were collected and analyzed by means of mass spectroscopy (MALDI-TOF-MS). Significantly expression pattern changes were observed in eleven proteins and enzymes. RFC1, KIF5C, ANXA2, N-RAP, RACK1 and citrate synthase were overexpressed or only present in the CGl. Contrariwise, STI1, hnRNPs and phosphoglycerate kinase 1 were significantly underexpressed in CGl. Aldose reductase and carbonic anhydrase were expressed only in NCGl. Our results show that obesity remodels the physiological and metabolic behavior of glioma cancer cells. Also, proteins found differently expressed are implicated in several signaling pathways that control matrix remodeling, proliferation, progression, migration and invasion. In general our results support the idea that obesity may increase glioma malignancy, however, some interesting paradox finding were also reported and discussed.
Resumo:
Iron plays a central role in host-parasite interactions, since both intervenients need iron for survival and growth, but are sensitive to iron-mediated toxicity. The host’s iron overload is often associated with susceptibility to infection. However, it has been previously reported that iron overload prevented the growth of Leishmania major, an agent of cutaneous leishmaniasis, in BALB/c mice. In order to further clarify the impact of iron modulation on the growth of Leishmania in vivo, we studied the effects of iron supplementation or deprivation on the growth of L. infantum, the causative agent of Mediterranean visceral leishmaniasis, in the mouse model. We found that dietary iron deficiency did not affect the protozoan growth, whereas iron overload decreased its replication in the liver and spleen of a susceptible mouse strain. The fact that the iron-induced inhibitory effect could not be seen in mice deficient in NADPH dependent oxidase or nitric oxide synthase 2 suggests that iron eliminates L. infantum in vivo through the interaction with reactive oxygen and nitrogen species. Iron overload did not significantly alter the mouse adaptive immune response against L. infantum. Furthermore, the inhibitory action of iron towards L. infantum was also observed, in a dose dependent manner, in axenic cultures of promastigotes and amastigotes. Importantly, high iron concentrations were needed to achieve such effects. In conclusion, externally added iron synergizes with the host’s oxidative mechanisms of defense in eliminating L. infantum from mouse tissues. Additionally, the direct toxicity of iron against Leishmania suggests a potential use of this metal as a therapeutic tool or the further exploration of iron anti-parasitic mechanisms for the design of new drugs.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology by Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica, Instituto Gulbenkian de Ciência.
Resumo:
Endophyte-assisted phytoremediation has recently been suggested as a successful approach for ecological restoration of metal contaminated soils, however little information is available on the influence of endophytic bacteria on the phytoextraction capacity of metal hyperaccumulating plants in multi-metal polluted soils. The aims of our study were to isolate and characterize metal-resistant and 1-aminocyclopropane-1-carboxylate (ACC) utilizing endophytic bacteria from tissues of the newly discovered Zn/Cd hyperaccumulator Sedum plumbizincicola and to examine if these endophytic bacterial strains could improve the efficiency of phytoextraction of multi-metal contaminated soils. Among a collection of 42 metal resistant bacterial strains isolated from the tissues of S. plumbizincicola grown on Pb/Zn mine tailings, five plant growth promoting endophytic bacterial strains (PGPE) were selected due to their ability to promote plant growth and to utilize ACC as the sole nitrogen source. The five isolates were identified as Bacillus pumilus E2S2, Bacillus sp. E1S2, Bacillus sp. E4S1, Achromobacter sp. E4L5 and Stenotrophomonas sp. E1L and subsequent testing revealed that they all exhibited traits associated with plant growth promotion, such as production of indole-3-acetic acid and siderophores and solubilization of phosphorus. These five strains showed high resistance to heavy metals (Cd, Zn and Pb) and various antibiotics. Further, inoculation of these ACC utilizing strains significantly increased the concentrations of water extractable Cd and Zn in soil. Moreover, a pot experiment was conducted to elucidate the effects of inoculating metal-resistant ACC utilizing strains on the growth of S. plumbizincicola and its uptake of Cd, Zn and Pb in multi-metal contaminated soils. Out of the five strains, B. pumilus E2S2 significantly increased root (146%) and shoot (17%) length, fresh (37%) and dry biomass (32%) of S. plumbizincicola as well as plant Cd uptake (43%), whereas Bacillus sp. E1S2 significantly enhanced the accumulation of Zn (18%) in plants compared with non-inoculated controls. The inoculated strains also showed high levels of colonization in rhizosphere and plant tissues. Results demonstrate the potential to improve phytoextraction of soils contaminated with multiple heavy metals by inoculating metal hyperaccumulating plants with their own selected functional endophytic bacterial strains.
Resumo:
Background Erectile dysfunction (ED) is a prevalent complication of diabetes, and oxidative stress is an important feature of diabetic ED. Oxidative stress-induced damage plays a pivotal role in the development of tissue alterations. However, the deleterious effects of oxidative stress in the corpus cavernosum with the progression of diabetes remain unclear. The aim of this study was to evaluate systemic and penile oxidative stress status in the early and late stages of diabetes. Methods Male Wistar streptozotocin-diabetic rats (and age-matched controls) were examined 2 (early) and 8 weeks (late) after the induction of diabetes. Systemic oxidative stress was evaluated by urinary H2O2 and the ratio of circulating reduced/oxidized glutathione (GSH/GSSG). Penile oxidative status was assessed by H2O2 production and 3-nitrotyrosine (3-NT) formation. Cavernosal endothelial nitric oxide synthase (eNOS) was analyzed by quantitative immunohistochemistry. Dual immunofluorescence was also performed for 3-NT and α-smooth muscle actin (α-SMA) and eNOS–α-SMA. Results There was a significant increase in urinary H2O2 levels in both diabetic groups. The plasma GSH/GSSG ratio was significantly augmented in late diabetes. In cavernosal tissue, H2O2 production was significantly increased in late diabetes. Reactivity for 3-NT was located predominantly in cavernosal smooth muscle (SM) and was significantly reduced in late diabetes. Quantitative immunohistochemistry revealed a significant decrease in eNOS levels in cavernosal SM and endothelium in late diabetes. Conclusions The findings indicate that the noxious effects of oxidative stress are more prominent in late diabetes. Increased penile protein oxidative modifications and decreased eNOS expression may be responsible for structural and/or functional deregulation, contributing to the progression of diabetes-associated ED.
Resumo:
A thesis submitted for the Degree of Master in Medical microbiology
Resumo:
RESUMO: O cancro colo-rectal (CCR) é um dos cancros que possui maior taxa de mortalidade a nível mundial. Em Portugal esta patologia é responsável pela morte de cerca de 3700 pessoas por ano, sendo que estes números aumentam de ano para ano. Ao longo das últimas décadas o papel das alterações genéticas na etiologia das patologias oncológicas tem vindo a ter cada vez mais um maior destaque. O número de estudos que avaliam a importância de polimorfismos, mutações, alterações na regulação génica e interacções entre genes no desenvolvimento destas patologias tem aumentado exponencialmente. Com o aumento do conhecimento da forma como estas alterações influenciam o desenvolvimento do cancro surgiram os primeiros meios de diagnóstico genético, levando assim a uma alteração da forma como são encarados o diagnóstico e a prevenção destas doenças. No CCR as formas hereditárias com alterações genéticas inequivocamente identificadas representam apenas 5% dos casos. Existem cerca de 25% que representam formas hereditárias para as quais ainda não foram estabelecidos os padrões de alterações genéticas subjacentes. Desta forma, estudos que venham contribuir para um maior conhecimento dos mecanismos moleculares responsáveis pelo aumento da susceptibilidade dos indivíduos para o desenvolvimento de CCR são extremamente importantes. O CCR é uma patologia multifactorial, onde factores genéticos interagem com factores ambientais no surgimento e desenvolvimento da doença. Assim, torna-se essencial integrar o estudo das alterações genéticas no contexto ambiental onde os indivíduos em estudo se encontram. No caso desta patologia um dos principais factores ambientais estudado é a nutrição. Vários estudos têm sido realizados ao longo dos últimos anos de forma a compreender como pode a ingestão dos nutrientes influenciar o desenvolvimento de CCR e de que forma interage com as alterações genéticas individuais. O ciclo do folato é um dos processos metabólicos onde o papel da nutrição em interacção com alterações genéticas mais tem sido estudado nos últimos anos. Deste cruzamento entre o estudo das alterações genéticas e ambientais surge a Nutrigenética. O conjunto de estudos da presente tese tem como objectivo aumentar o conhecimento do papel das alterações em genes do ciclo do folato, em interacção com factores nutricionais e de estilo de vida, não só no desenvolvimento de CCR, mas também de outra patologia do tracto gastrointestinal, a Doença de Crohn (DC), uma doença inflamatória muitas vezes associada como factor de risco para o desenvolvimento de CCR. Este estudo debruçou-se essencialmente no estudo dos genes timidilato sintetase (TYMS) e metionina sintetase (MTR) em populações com CCR e DC, bem como no padrão nutricional destas populações com particular incidência nos nutrientes envolvidos no ciclo do folato (folato, metionina, vitamina B6, vitamina B12). Analisando o conjunto de resultados obtidos para os estudos do CCR podemos concluir que quer a TYMS quer a MTR possuem um papel relevante na susceptibilidade para desenvolver esta patologia, assim como têm destaque no funcionamento do ciclo celular durante o processo oncogénico. Os resultados demonstram que os factores que levam a uma menor disponibilidade de grupos metil no ciclo de folato (baixos níveis de folato, alteração da actividade de MTR, elevada expressão de TYMS) constituem factores de risco, muito provavelmente por contribuírem para uma desregulação dos níveis de metionina disponível para a metilação do DNA da célula. Demonstram ainda que em células tumorais ocorrem alterações na regulação do ciclo do folato de forma a favorecer a síntese de DNA em detrimento da metilação do mesmo, alterando para isso a expressão dos genes de forma a que o fluxo de grupos metil provenientes do folato sejam encaminhados para a enzima TYMS. O polimorfismo de deleção 6pb da TYMS surge como um factor de diagnóstico e de prognóstico de CCR para a população portuguesa. Dos factores nutricionais analisados apenas o folato aparenta ter um papel relevante na modelação do risco de desenvolver CCR. Na doença de Crohn (DC) podemos verificar que a homocisteína e o seu metabolismo poderão contribuir para o aparecimento e desenvolvimento da patologia. O aumento da homocisteína poderá ser o responsável por um aumento da resposta auto-imune do organismo, promovendo o aparecimento da DC. O polimorfismo A2756G MTR desempenha um papel preponderante como factor de diagnóstico da DC, tendo sido associado pela primeira vez a esta patologia. Tem também um papel importante no desenvolvimento da doença, uma vez que está associado a uma idade de diagnóstico mais baixa, sugerindo assim que o desenvolvimento da doença ocorre de forma mais precoce. Concluindo, com este estudo pensamos ter contribuído para um melhor entendimento do papel do ciclo do folato no desenvolvimento de CCR e DC, sendo um ponto de partida para futuras investigações que possam revelar cada vez melhor as complexas interacções metabólicas desta via e a sua influência nas patologias estudadas. Do nosso estudo destacamos a importância de uma análise global das várias etapas do ciclo do folato para que se possa compreender a dinâmica que se estabelece no desenvolvimento destas patologias, podendo diversas alterações, quer a nível genético quer a nível nutricional, exercerem efeitos diferentes consoante o estado dos restantes intervenientes do ciclo do folato. Acreditamos que no futuro este estudo permitirá que o conhecimento do ciclo do folato tenha cada vez mais uma relevância fundamental a nível de diagnóstico e terapêutica destas patologias.------------ ABSTRACT: Colorectal Cancer (CRC) is one of the cancers that have a higher rate of mortality worldwide. In Portugal this pathology is responsible for the deaths of about 3700 people per year, and these numbers increase each year. Over the past few decades the role of genetic changes in the etiology of oncological pathologies has had an increasingly greater emphasis. The number of studies that evaluate the importance of polymorphisms, mutations, changes in gene regulation and gene interactions in the development of these diseases has increased exponentially. With the increased knowledge of how these changes influence the development of cancer, appeared the first means for genetic diagnostic, leading to a change in the way diagnosis is seen and in the prevention of these diseases. In CRC the hereditary forms with clearly identified genetic changes represent only 5% of cases. There are about 25% representing hereditary forms for which the patterns of genetic changes haven’t been established. In this way, studies that will contribute to a greater understanding of the molecular mechanisms responsible for increased susceptibility of individuals to the CRC development are extremely important. CRC is a multifactorial pathology, where genetic factors interact with environmental factors in the emergence and development of the disease.Thus, it is essential to integrate the study of genetic changes in the environmental context of the individuals under study. In the case of this pathology one of the main environmental factors studied is nutrition. Several studies have been conducted over the past few years in order to understand how the intake of nutrients can influence the development of CRC and how nutrients interact with the individual genetic changes. The folate cycle is one of the metabolic processes where the role of nutrition in interaction with genetic alterations has been studied in recent years. This cross between the study of genetic and environmental changes developed Nutrigenetics. The set of studies of this thesis aims to increase awareness of the role of changes in genes of the folate cycle, in interaction with nutritional factors and lifestyle, not only in the development of CRC, but also of another pathology of the gastrointestinal tract, Crohn's disease (CD), an inflammatory disease often associated as a risk factor for the development of CRC. This study dealt mainly in the study of genes thymidylate synthase (TYMS) and methionine synthase (MTR) in populations with CRC and CD, as well as in the nutritional pattern of these populations with particular focus on nutrients involved in the folate cycle (folate, methionine, vitamin B6, vitamin B12). Analyzing the results obtained for the CRC studies we conclude that either the MTR TYMS have a relevant role in susceptibility to develop this pathology, and have an important role in the functioning of the cell cycle during oncogenesis. The results show that the factors that lead to a lower availability of methyl groups in folate cycle (low levels of folate, change the activity of MTR, high expression of TYMS) constitute risk factors, most likely by contribute to a dysregulation of methionine levels available for DNA methylation of the cell. Our results also demonstrate that in tumor cells occur changes in the regulation of the folate cycle in order to promote the synthesis of DNA, to the detriment of methylation of the same by changing the expression of genes so that the methyl groups from folate are forwarded to the TYMS enzyme reaction. The deletion polymorphism 6bp of TYMS emerges as a diagnostic and prognostic factor of CCR for the Portuguese population. Nutritional factors analyzed only folate appears to have a major role in modulating the risk of developing CCR.In Crohn’s disease (CD) we can check that homocysteine and its metabolism may contribute to the emergence and development of this pathology. Increased homocysteine may be responsible for an increase in the body's autoimmune response, promoting the emergence of CD. The polymorphism A2756G MTR plays a leading role as a factor of diagnosis of DC, having been associated with this pathology for the first time. It also has an important role in the development of the disease, since it is associated with a lower diagnostic age, suggesting that the development of the disease occurs earlier. In conclusion, our study has contributed to a better understanding of the role of folate cycle in the development of CRC and CD, being a starting point for future research that may prove increasingly complex metabolic interactions in this via and its influence on the pathologies studied. In our study we highlight the importance of a comprehensive analysis of the various steps of the folate cycle in order to understand the dynamics that settles in the development of these pathologies, and a number of amendments, whether at the genetic level or at the nutritional level, exercise different effects depending on the stage of the remaining participants in the folate cycle. We believe that in the future this study will allow the knowledge of folate cycle to have increasingly a fundamental relevance at the level of diagnosis and treatment of these diseases.
Resumo:
AIMS: Aldosterone plays a crucial role in cardiovascular disease. 'Systemic' inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the 'endothelial' MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. METHODS AND RESULTS: C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high 'endogenous' aldosterone) and in 'exogenous' aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. CONCLUSION: Obesity-induced endothelial dysfunction depends on the 'endothelial' MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population of obese patients to decrease vascular dysfunction and subsequent atherosclerotic complications.
Resumo:
RESUME : L'athérosclérose, pathologie inflammatoire artérielle chronique, est à l'origine de la plupart des maladies cardiovasculaires qui constituent l'une des premières causes de morbidité et mortalité en France. Les études observationnelles et expérimentales montrent que l'exercice physique prévient la mortalité cardiovasculaire. Cependant, les mécanismes précisant les bénéfices cliniques de l'exercice sur l'athérosclérose sont encore largement inconnus. Le but général de ce travail a donc été d'explorer, en utilisant un modèle expérimental d'athérosclérose, la souris hypercholestérolémique génétiquement dépourvue en apolipoprotéine E (apoE-/-), les mécanismes athéroprotecteurs de l'exercice. La dysfonction endothéliale, généralement associée aux facteurs de risque cardiovasculaire, serait l'une des étapes précoces majeures de l'athérogenèse. Elle est caractérisée par une diminution de la biodisponibilité en monoxyde d'azote (NO) avec la perte de ses propriétés vasculo-protectrices, ce qui favorise un climat pro-athérogène (stress oxydatif, adhésion et infiltration des cellules inflammatoires dans la paroi artérielle...) conduisant à la formation de la plaque athéromateuse. L'objectif de notre premier travail a donc été d'explorer les effets de l'exercice d'une part, sur le développement des plaques athéromateuses et d'autre part, sur la fonction endothéliale de la souris apoE-/-. Nos résultats montrent que l'exercice réduit significativement l'extension de l'athérosclérose et prévient la dysfonction endothéliale. L'explication pharmacologique montre que l'exercice stimule la fonction endothéliale via, notamment, une plus grande sensibilité des récepteurs endothéliaux muscariniques, ce qui active les événements signalétiques cellulaires récepteurs-dépendants à l'origine d'une bioactivité accrue de NO. Les complications cliniques graves de l'athérosclérose sont induites par la rupture de la plaque instable provoquant la formation d'un thrombus occlusif et l'ischémie du territoire tissulaire en aval. L'objectif de notre deuxième travail a été d'examiner l'effet de l'exercice sur la qualité/stabilité de la plaque. Nos résultats indiquent que l'exercice de longue durée stabilise la plaque en augmentant le nombre de cellules musculaires lisses et en diminuant le nombre de macrophages intra-plaques. Nos résultats montrent aussi que la phosphorylation de la eNOS (NO Synthase endothéliale) Akt-dépendante n'est pas le mécanisme moléculaire majeur à l'origine de ce bénéfice. Enfin, dans notre troisième travail, nous avons investigué l'effet de l'exercice sur le développement de la plaque vulnérable. Nos résultats montrent, chez un modèle murin de plaque instable (modèle d'hypertension rénovasculaire à rénine et angiotensine II élevés) que l'exercice prévient l'apparition de la plaque vulnérable indépendamment d'un effet hémodynamique. Ce bénéfice serait associé à une diminution de l'expression vasculaire des récepteurs AT1 de l'Angiotensine II. Nos résultats justifient l'importance de l'exercice comme outil préventif des maladies cardiovasculaires. ABSTRACT : Atherosclerosis, a chronic inflammatory disease, is one of the main causes of morbidity and mortality in France. Observational and experimental data indicate that regular physical exercise has a positive impact on cardiovascular mortality. However, the mechanisms by which exercise exerts clinical benefits on atherosclerosis are still unknown. The general aim of this work was to elucidate the anti-atherosclerotic effects of exercise, using a mouse model of atherosclerosis: the apolipoprotein E-deficient mice (apoE-/- mice). Endothelial dysfunction, generally associated with cardiovascular risk factors, has been recognized to be a major and early step in atherogenesis. Endothelial dysfunction is characterized by Nitric Oxide (NO) biodisponibility reduction with loss of NO-mediated vasculoprotective actions. This leads to vascular effects such as increased oxidative stress and increased adhesion of inflammatory cells into arterial wall thus playing a role in atherosclerotic plaque development. Therefore, one of the objective of our study was to explore the effects of exercise on atherosclerotic plaque extension and on endothelial function in apoE-/- mice. Results show that exercise significantly reduces plaque progression and prevents endothelial dysfunction. Pharmacological explanation indicates that exercise stimulates endothelial function by increasing muscarinic receptors sensitivity which in turn activates intracellular signalling receptor-dependent events leading to increased NO bioactivity. The clinical manifestations of atherosclerosis are the consequences of unstable plaque rupture with thrombus formation leading to tissue ischemia. The second aim of our work was to determine the effect of exercise on plaque stability. We demonstrate that long-term exercise stabilizes atherosclerotic plaques as shown by decreased macrophage and increased Smooth Muscle Cells plaque content. Our results also suggest that the Akt-dependent eNOS phosphorylation pathway is not the primary molecular mechanism mediating these beneficial effects. Finally, we assessed a putative beneficial effect of exercise on vulnerable plaque development. In a mouse model of Angiotensine II (Ang II)-mediated vulnerable atherosclerotic plaques, we provide fist evidence that exercise prevents atherosclerosis progression and plaque vulnerability. The beneficial effect of swimming was associated with decreased aortic Ang II AT1 receptor expression independently from any hemodynamic change. These findings suggest clinical benefit of exercise in terms of cardiovascular event protection.
Resumo:
Polyhydroxyalkanoate (PHA) is a family of polymers composed primarily of R-3-hydroxyalkanoic acids. These polymers have properties of biodegradable thermoplastics and elastomers. Medium-chain-length PHAs (MCL-PHAs) are synthesized in bacteria by using intermediates of the beta-oxidation of alkanoic acids. To assess the feasibility of producing MCL-PHAs in plants, Arabidopsis thaliana was transformed with the PhaC1 synthase from Pseudomonas aeruginosa modified for peroxisome targeting by addition of the carboxyl 34 amino acids from the Brassica napus isocitrate lyase. Immunocytochemistry demonstrated that the modified PHA synthase was appropriately targeted to leaf-type peroxisomes in light-grown plants and glyoxysomes in dark-grown plants. Plants expressing the PHA synthase accumulated electron-lucent inclusions in the glyoxysomes and leaf-type peroxisomes, as well as in the vacuole. These inclusions were similar to bacterial PHA inclusions. Analysis of plant extracts by GC and mass spectrometry demonstrated the presence of MCL-PHA in transgenic plants to approximately 4 mg per g of dry weight. The plant PHA contained saturated and unsaturated 3-hydroxyalkanoic acids ranging from six to 16 carbons with 41% of the monomers being 3-hydroxyoctanoic acid and 3-hydroxyoctenoic acid. These results indicate that the beta-oxidation of plant fatty acids can generate a broad range of R-3-hydroxyacyl-CoA intermediates that can be used to synthesize MCL-PHAs.
Resumo:
Although chronic hypoxia is a claimed myocardial risk factor reducing tolerance to ischemia/reperfusion (I/R), intermittent reoxygenation has beneficial effects and enhances heart tolerance to I/R. AIM OF THE STUDY: To test the hypothesis that, by mimicking intermittent reoxygenation, selective inhibition of phosphodiesterase-5 activity improves ischemia tolerance during hypoxia. Adult male Sprague-Dawley rats were exposed to hypoxia for 15 days (10% O₂) and treated with placebo, sildenafil (1.4 mg/kg/day, i. p.), intermittent reoxygenation (1 h/day exposure to room air) or both. Controls were normoxic hearts. To assess tolerance to I/R all hearts were subjected to 30-min regional ischemia by left anterior descending coronary artery ligation followed by 3 h-reperfusion. Whereas hypoxia depressed tolerance to I/R, both sildenafil and intermittent reoxygenation reduced the infarct size without exhibiting cumulative effects. The changes in myocardial cGMP, apoptosis (DNA fragmentation), caspase-3 activity (alternative marker for cardiomyocyte apoptosis), eNOS phosphorylation and Akt activity paralleled the changes in cardioprotection. However, the level of plasma nitrates and nitrites was higher in the sildenafil+intermittent reoxygenation than sildenafil and intermittent reoxygenation groups, whereas total eNOS and Akt proteins were unchanged throughout. CONCLUSIONS: Sildenafil administration has the potential to mimic the cardioprotective effects led by intermittent reoxygenation, thereby opening the possibility to treat patients unable to be reoxygenated through a pharmacological modulation of NO-dependent mechanisms.
Resumo:
The relationship between metabolism and reactive oxygen species (ROS) production by the mitochondria has often been (wrongly) viewed as straightforward, with increased metabolism leading to higher generation of pro-oxidants. Insights into mitochondrial functioning show that oxygen consumption is principally coupled with either energy conversion as ATP or as heat, depending on whether the ATP-synthase or the mitochondrial uncoupling protein 1 (UCP1) is driving respiration. However, these two processes might greatly differ in terms of oxidative costs. We used a cold challenge to investigate the oxidative stress consequences of an increased metabolism achieved either by the activation of an uncoupled mechanism (i.e. UCP1 activity) in the brown adipose tissue (BAT) of wild-type mice or by ATP-dependent muscular shivering thermogenesis in mice deficient for UCP1. Although both mouse strains increased their metabolism by more than twofold when acclimatised for 4 weeks to moderate cold (12°C), only mice deficient for UCP1 suffered from elevated levels of oxidative stress. When exposed to cold, mice deficient for UCP1 showed an increase of 20.2% in plasmatic reactive oxygen metabolites, 81.8% in muscular oxidized glutathione and 47.1% in muscular protein carbonyls. In contrast, there was no evidence of elevated levels of oxidative stress in the plasma, muscles or BAT of wild-type mice exposed to cold despite a drastic increase in BAT activity. Our study demonstrates differing oxidative costs linked to the functioning of two highly metabolically active organs during thermogenesis, and advises careful consideration of mitochondrial functioning when investigating the links between metabolism and oxidative stress.