935 resultados para Aberdeen Angus
Resumo:
Regulation of protein phosphatase 1 (PP1) by protein inhibitors and targeting subunits has been previously studied through the use of recombinant protein expressed in Escherichia coli. This preparation is limited by several key differences in its properties compared with native PP1. In the present study, we have analyzed recombinant PP1 expressed in Sf9 insect cells using baculovirus. Sf9 PP1 exhibited properties identical to those of native PP1, with respect to regulation by metals, inhibitor proteins, and targeting subunits, and failure to dephosphorylate a phosphotyrosine-containing substrate or phospho-DARPP-32 (Dopamine and cAMP-regulated phosphoprotein, Mr 32,000). Mutations at Y272 in the β12/β13 loop resulted in a loss of activity and reduced the sensitivity to thiophospho-DARPP-32 and inhibitor-2. Mutations of Y272 also increased the relative activity toward a phosphotyrosine-containing substrate or phospho-DARPP-32. Mutation of acidic groove residues caused no change in sensitivity to thiophospho-DARPP-32 or inhibitor-2, but one mutant (E252A:D253A:E256R) exhibited an increased Km for phosphorylase a. Several PP1/PP2A chimeras were prepared in which C-terminal sequences of PP2A were substituted into PP1. Replacement of residues 274–330 of PP1 with the corresponding region of PP2A resulted in a large loss of sensitivity to thiophospho-DARPP-32 and inhibitor-2, and also resulted in a loss of interaction with the targeting subunits, spinophilin and PP1 nuclear targeting subunit (PNUTS). More limited alterations in residues in β12, β13, and β14 strands highlighted a key role for M290 and C291 in the interaction of PP1 with thiophospho-DARPP-32, but not inhibitor-2.
Resumo:
The spatial and temporal expression patterns of metallothionein (MT) isoforms MT1a and MT2a were investigated in vegetative and reproductive tissues of untreated and copper-treated Arabidopsis by in situ hybridization and by northern blotting. In control plants, MT1a mRNA was localized in leaf trichomes and in the vascular tissue in leaves, roots, flowers, and germinating embryos. In copper-treated plants, MT1a expression was also observed in the leaf mesophyll and in vascular tissue of developing siliques and seeds. In contrast, MT2a was expressed primarily in the trichomes of both untreated and copper-treated plants. In copper-treated plants, MT2a mRNA was also expressed in siliques. Northern-hybridization studies performed on developing seedlings and leaves showed temporal variations of MT1a gene expression but not of MT2a expression. The possible implications of these findings for the cellular roles of MTs in plants are discussed.
Resumo:
Peer reviewed
Resumo:
Funding for work in the laboratory of PB was supported by Scottish Government Rural and Environment Science and Analytical Services Division, BBSRC (grant BB/M001504/1), British Society for Neuroendocrinology (research visit grant to IP). Work in the laboratory of SS was supported by a grant from the DFG (Ste 331/8-1). We thank Siegried Hilken, Marianne Brüning, Dr. Esther Lipokatic-Takacs and Dr. Frank Scherbarth at UVMH for technical assistance. We thank Graham Horgan of Bioinformatics, Statistics Scotland for assistance with some of statistical tests.
Resumo:
© The Author(s) 2014. Acknowledgements We thank the Information Services Division, Scotland, who provided the SMR01 data, and NHS Grampian, who provided the biochemistry data. We also thank the University of Aberdeen’s Data Management Team. Funding This work was supported by the Chief Scientists Office for Scotland (grant no. CZH/4/656).
Resumo:
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Acknowledgements The authors would like to thank Dr Marius Sudol for the hYAP plasmids (obtained through Addgene), Dr Pete Zammit for the pMSCV-IRES-eGFP plasmid, Dr Robert Judson for subcloning the hYAP cDNAs into the pMSCV-IRES-eGFP plasmid, Dr Lynda Erskine for the provision of mouse embryo samples, and Professor Jimmy Hutchison and the Orthopaedics Department at the Aberdeen Royal Infirmary for the provision of human tissue samples. The authors are also grateful to Denise Tosh and Susan Clark for excellent technical support. This work was funded by Arthritis Research UK (grant 19429).
Resumo:
Peer reviewed
Resumo:
This study was supported by a Wellcome Trust-NIH PhD Studentship to SB, WDF and NV. Grant number 098252/Z/12/Z. SB, CHC and WDF are supported by the Intramural Research Program, NCI, NIH. NHG and WL are supported by the Intramural Research Program, NIA, NIH.
Resumo:
Acknowledgments The data in this article have been partly presented in preliminary abstract form as a poster at the winter meeting of the British Thoracic Society, London, 2 December 2015 (10.1136/thoraxjnl-2015-207770.161).
Resumo:
Peer reviewed
Resumo:
Publisher PDF
Resumo:
Peer reviewed
Resumo:
Peer reviewed