880 resultados para Abelian groups.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a two-step pseudo likelihood estimation technique for generalized linear mixed models with the random effects being correlated between groups. The core idea is to deal with the intractable integrals in the likelihood function by multivariate Taylor's approximation. The accuracy of the estimation technique is assessed in a Monte-Carlo study. An application of it with a binary response variable is presented using a real data set on credit defaults from two Swedish banks. Thanks to the use of two-step estimation technique, the proposed algorithm outperforms conventional pseudo likelihood algorithms in terms of computational time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Facilitation of local women's groups may reportedly reduce neonatal mortality. It is not known whether facilitation of groups composed of local health care staff and politicians can improve perinatal outcomes. We hypothesised that facilitation of local stakeholder groups would reduce neonatal mortality (primary outcome) and improve maternal, delivery, and newborn care indicators (secondary outcomes) in Quang Ninh province, Vietnam. METHODS AND FINDINGS: In a cluster-randomized design 44 communes were allocated to intervention and 46 to control. Laywomen facilitated monthly meetings during 3 years in groups composed of health care staff and key persons in the communes. A problem-solving approach was employed. Births and neonatal deaths were monitored, and interviews were performed in households of neonatal deaths and of randomly selected surviving infants. A latent period before effect is expected in this type of intervention, but this timeframe was not pre-specified. Neonatal mortality rate (NMR) from July 2008 to June 2011 was 16.5/1,000 (195 deaths per 11,818 live births) in the intervention communes and 18.4/1,000 (194 per 10,559 live births) in control communes (adjusted odds ratio [OR] 0.96 [95% CI 0.73-1.25]). There was a significant downward time trend of NMR in intervention communes (p = 0.003) but not in control communes (p = 0.184). No significant difference in NMR was observed during the first two years (July 2008 to June 2010) while the third year (July 2010 to June 2011) had significantly lower NMR in intervention arm: adjusted OR 0.51 (95% CI 0.30-0.89). Women in intervention communes more frequently attended antenatal care (adjusted OR 2.27 [95% CI 1.07-4.8]). CONCLUSIONS: A randomized facilitation intervention with local stakeholder groups composed of primary care staff and local politicians working for three years with a perinatal problem-solving approach resulted in increased attendance to antenatal care and reduced neonatal mortality after a latent period. TRIAL REGISTRATION: Current Controlled Trials ISRCTN44599712. Please see later in the article for the Editors' Summary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Annually, 2.8 million neonatal deaths occur worldwide, despite the fact that three-quarters of them could be prevented if available evidence-based interventions were used. Facilitation of community groups has been recognized as a promising method to translate knowledge into practice. In northern Vietnam, the Neonatal Health - Knowledge Into Practice trial evaluated facilitation of community groups (2008-2011) and succeeded in reducing the neonatal mortality rate (adjusted odds ratio, 0.51; 95 % confidence interval 0.30-0.89). The aim of this paper is to report on the process (implementation and mechanism of impact) of this intervention. METHODS: Process data were excerpted from diary information from meetings with facilitators and intervention groups, and from supervisor records of monthly meetings with facilitators. Data were analyzed using descriptive statistics. An evaluation including attributes and skills of facilitators (e.g., group management, communication, and commitment) was performed at the end of the intervention using a six-item instrument. Odds ratios were analyzed, adjusted for cluster randomization using general linear mixed models. RESULTS: To ensure eight active facilitators over 3 years, 11 Women's Union representatives were recruited and trained. Of the 44 intervention groups, composed of health staff and commune stakeholders, 43 completed their activities until the end of the study. In total, 95 % (n = 1508) of the intended monthly meetings with an intervention group and a facilitator were conducted. The overall attendance of intervention group members was 86 %. The groups identified 32 unique problems and implemented 39 unique actions. The identified problems targeted health issues concerning both women and neonates. Actions implemented were mainly communication activities. Communes supported by a group with a facilitator who was rated high on attributes and skills (n = 27) had lower odds of neonatal mortality (odds ratio, 0.37; 95 % confidence interval, 0.19-0.73) than control communes (n = 46). CONCLUSIONS: This evaluation identified several factors that might have influenced the outcomes of the trial: continuity of intervention groups' work, adequate attributes and skills of facilitators, and targeting problems along a continuum of care. Such factors are important to consider in scaling-up efforts.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a model economy in which formation of coalition groups under technological progress is generated endogenously. The coalition formation depends crucially on the rate of arrival of new technologies. In the model, an agent working in the saroe technology for more than one period acquires skills, part of which is specific to this technology. These skills increase the agent productivity. In this case, if he has worked more than one period with the same technology he has incentives to construct a coalition to block the adoption of new technologies. Therefore, in every sector the workers have incentives to construct a coalition and to block the adoption of new technologies. They will block every time that a technology stay in use for more than one period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differences-in-Differences (DID) is one of the most widely used identification strategies in applied economics. However, how to draw inferences in DID models when there are few treated groups remains an open question. We show that the usual inference methods used in DID models might not perform well when there are few treated groups and errors are heteroskedastic. In particular, we show that when there is variation in the number of observations per group, inference methods designed to work when there are few treated groups tend to (under-) over-reject the null hypothesis when the treated groups are (large) small relative to the control groups. This happens because larger groups tend to have lower variance, generating heteroskedasticity in the group x time aggregate DID model. We provide evidence from Monte Carlo simulations and from placebo DID regressions with the American Community Survey (ACS) and the Current Population Survey (CPS) datasets to show that this problem is relevant even in datasets with large numbers of observations per group. We then derive an alternative inference method that provides accurate hypothesis testing in situations where there are few treated groups (or even just one) and many control groups in the presence of heteroskedasticity. Our method assumes that we can model the heteroskedasticity of a linear combination of the errors. We show that this assumption can be satisfied without imposing strong assumptions on the errors in common DID applications. With many pre-treatment periods, we show that this assumption can be relaxed. Instead, we provide an alternative inference method that relies on strict stationarity and ergodicity of the time series. Finally, we consider two recent alternatives to DID when there are many pre-treatment periods. We extend our inference methods to linear factor models when there are few treated groups. We also derive conditions under which a permutation test for the synthetic control estimator proposed by Abadie et al. (2010) is robust to heteroskedasticity and propose a modification on the test statistic that provided a better heteroskedasticity correction in our simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differences-in-Differences (DID) is one of the most widely used identification strategies in applied economics. However, how to draw inferences in DID models when there are few treated groups remains an open question. We show that the usual inference methods used in DID models might not perform well when there are few treated groups and errors are heteroskedastic. In particular, we show that when there is variation in the number of observations per group, inference methods designed to work when there are few treated groups tend to (under-) over-reject the null hypothesis when the treated groups are (large) small relative to the control groups. This happens because larger groups tend to have lower variance, generating heteroskedasticity in the group x time aggregate DID model. We provide evidence from Monte Carlo simulations and from placebo DID regressions with the American Community Survey (ACS) and the Current Population Survey (CPS) datasets to show that this problem is relevant even in datasets with large numbers of observations per group. We then derive an alternative inference method that provides accurate hypothesis testing in situations where there are few treated groups (or even just one) and many control groups in the presence of heteroskedasticity. Our method assumes that we know how the heteroskedasticity is generated, which is the case when it is generated by variation in the number of observations per group. With many pre-treatment periods, we show that this assumption can be relaxed. Instead, we provide an alternative application of our method that relies on assumptions about stationarity and convergence of the moments of the time series. Finally, we consider two recent alternatives to DID when there are many pre-treatment groups. We extend our inference method to linear factor models when there are few treated groups. We also propose a permutation test for the synthetic control estimator that provided a better heteroskedasticity correction in our simulations than the test suggested by Abadie et al. (2010).