951 resultados para Ab Initio Density Functional Calculations
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pilocarpine is a natural substance with potential application in the treatment of several diseases. In this work Fourier Transform (FT)-Raman spectrum and the Fourier Transform infra red (FT-IR) spectrum of pilocarpine hydrochloride C11H17N2O2+.Cl- were investigated at 300 K. Vibrational wavenumber and wave vector have been predicted using density functional theory (B3LYP) calculations with the 6-31 G(d,p) basis set. A comparison with experiment allowed us to assign most of the normal modes of the crystal.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Naturally occuring or man-made systems displaying periodic spatial modulations of their properties on a nanoscale constitute superlattices. Such modulated structures are important both as prototypes of simple nanotechnological devices and as particular examples of emerging spatial inhomogeneity in interacting many-electron systems. Here we investigate the effect different types of modulation of the system parameters have on the ground-state energy and the charge-density distribution of the system. The superlattices are described by the inhomogeneous attractive Hubbard model, and the calculations are performed by density-functional and density-matrix renormalization group techniques. We find that modulations in local electric potentials are much more effective in shaping the system's properties than modulations in the attractive on-site interaction. This is the same conclusion we previously [M.F. Silva, N.A. Lima, A.L. Malvezzi, K. Capelle, Phys. Rev. B 71 (2005) 125130.] obtained for repulsive interactions, suggesting that it is not an artifact of a specific state, but a general property of modulated structures. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Li2TiSiO5 powders were synthesized by the polymeric precursor method. The calcination temperatures were progressively increased until the complete crystallization of the phase occurring at 870 degreesC. For the first time, a strong photoluminescence was measured at room temperature with a 488 nm excitation wavelength for the non-crystalline samples. This photoluminescence in disordered phases has been interpreted by means of high-level quantum mechanical calculations based on density functional theory. Two periodic models have been used to represent the crystalline and disordered powders. They allowed to calculate electronic properties consistent with experimental data and to explain the relations between photoluminescence and structural disorder. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
C(13)H(16)Cl(2)Te,M(r)=370.76,P2(1)/a, a = 8.1833(8), b = 8.4163(8), c = 20.787(2) A, beta = 99.52(1)degrees, Z = 4, R(1) = 0,0275. The primary coordination around the Te(IV) atom is consistent with a pseudo-trigonal bipyramidal bond configuration with two Cl atoms occupying axial positions while the C atoms and the lone pair of electrons occupy the equatorial positions. The Te(IV) atom is involved in an intermolecular secondary interaction resulting in the self assembly of zigzag-chains supramolecular array. In order to determine the theoretical basis set for the Te atom which leads to the best agreement with the experimental data, a large series of geometry optimizations were performed on dichloro dimethyl Te(IV), as a model compound, and the results compared with the mean distances and angles obtained from 45 X-ray structures. The Ahlrichs basis set plus the Hay & Wadt ECP was selected and used for a series of calculations performed on the title compound.