895 resultados para AQUEOUS UREA
Resumo:
Background: Asparagus is a plant with high nutritional, pharmaceutical, and industrial values. Objective: The present study aimed to evaluate the effect of aqueous extract of asparagus roots on the hypothalamic-pituitary-gonadal axis hormones and oogenesis in female rats. Materials and Methods: In this experimental study, 40 adult female Wistar rats were divided into five groups, which consist 8 rats. Groups included control, sham and three experimental groups receiving different doses (100, 200, 400 mg/kg/bw) of aqueous extract of asparagus roots. All dosages were administered orally for 28 days. Blood samples were taken from rats to evaluate serum levels of Gonadotropin releasing hormone (GnRH), follicular stimulating hormone (FSH), Luteinal hormone (LH), estrogen, and progesterone hormones. The ovaries were removed, weighted, sectioned, and studied by light microscope. Results: Dose-dependent aqueous extract of asparagus roots significantly increased serum levels of GnRH, FSH, LH, estrogen, and progestin hormones compared to control and sham groups. Increase in number of ovarian follicles and corpus luteum in groups treated with asparagus root extract was also observed (p<0.05). Conclusion: Asparagus roots extract stimulates secretion of hypothalamic- pituitary- gonadal axis hormones. This also positively affects oogenesis in female rats.
Resumo:
A family of bulk and SBA-15 supported peroxo niobic acid sols were prepared by peptisation of niobic acid precipitates with H2O2 as heterogeneous catalysts for aqueous phase glucose and fructose conversion to 5-hydroxymethylfurfural (5-HMF). Niobic acid nanoparticles possess a high density of Brønsted and Lewis acid sites, conferring good activity towards glucose and fructose conversion, albeit with modest 5-HMF yields under mild reaction conditions (100 °C). Thermally-induced niobia crystallisation suppresses solid acidity and activity. Nanoparticulate niobic acid dispersed over SBA-15 exhibits pure Brønsted acidity and an enhanced Turnover Frequency for fructose dehydration.
Resumo:
The effect of microwave pre-treatment on the levels of total phenolic compounds, flavonoids, proanthocyanidins and individual major compounds as well as the total antioxidant activity of the dried lemon pomace was investigated. The results showed that microwave pre-treatment significantly affected all the examined parameters. The total phenolic content, total flavonoids, proanthocyanidins, as well as the total antioxidant activity significantly increased as the microwave radiation time and power increased (e.g., 2.5 folds for phenolics, 1.4 folds for flavonoids and 5.5 folds for proanthocyanidins), however irradiation more than 480 W for 5 min resulted in the decrease of these parameters. These findings indicate that microwave irradiation time and power may enhance higher levels of the phenolic compounds as well as the antioxidant capacity of the dried lemon pomace powder. However, higher and longer irradiation may lead to a degradation of phenolic compounds and lower the antioxidant capacity of the dried lemon pomace.
Resumo:
The use of biological processes with the aim of the recovery of gold from low-concentration solutions derived from leaching of secondary sources is gaining increasing importance owing to the scarcity of the primary resources and the economic and environmental advantages usually presented by these methods. Thus, the addition in batch and continuous processes of different solutions containing biogenic sulphide, which was generated by the activity of sulphate-reducing bacteria (SRB), to gold(III) solutions was investigated for that purpose. In the batch experiments, AuS nanoparticles with sizes of between 6 and 14 nm were obtained (corresponding to 100% removal of Au(III) from solution) if the biogenic sulphide was generated in a typical nutrient medium for SRB, whereas Au(0) nanoparticles with sizes of below 8 nm were obtained (corresponding to 62% removal of Au(III)) if effluent from a SRB bioremediation process for treating acid mine drainage (AMD) was used instead. These results stimulated the development of a continuous process of addition, in which two sulphide-rich effluents, which resulted from a SRB bioremediation process for treating two types of AMD (from a uranium mine and a polysulphide mine), were tested. In both cases, Au(0) nanoparticles with sizes of between 6 and 15 nm were mainly obtained, and the percentage removal of Au(III) from solution ranged from 76% to 100%. The processes described allow the simultaneous treatment of AMD and recovery of metallic gold nanoparticles, which are a product with a wide range of applications (e.g., in medicine, optical devices and catalysis) and high economic value. The synthesis process described in this work can be considered as novel, because it is the first time, to our knowledge, that the use of effluent from a SRB bioremediation process has been reported for the recovery of gold(III) as gold(0) nanoparticles.
Resumo:
2015
Resumo:
A comprehensive sequential extraction procedure was applied to isolate soil organic components using aqueous solvents at different pH values, base plus urea (base-urea), and finally dimethylsulfoxide (DMSO) plus concentrated H2SO4 (DMSO-acid) for the humin-enriched clay separates. The extracts from base-urea and DMSO-acid would be regarded as 'humin' in the classical definitions. The fractions isolated from aqueous base, base-urea and DMSO-acid were characterized by solid and solution state NMR spectroscopy. The base-urea solvent system isolated ca. 10% (by mass) additional humic substances. The combined base-urea and DMSO-acid solvents isolated ca. 93% of total organic carbon from the humin-enriched fine clay fraction (<2 ?m). Characterization of the humic fractions by solid-state NMR spectroscopy showed that oxidized char materials were concentrated in humic acids isolated at pH 7, and in the base-urea extract. Lignin-derived materials were in considerable abundance in the humic acids isolated at pH 12.6. Only very small amounts of char-derived structures were contained in the fulvic acids and fulvic acids-like material isolated from the base-urea solvent. After extraction with base-urea, the 0.5 m NaOH extract from the humin-enriched clay was predominantly composed of aliphatic hydrocarbon groups, and with lesser amounts of aromatic carbon (probably including some char material), and carbohydrates and peptides. From the combination of solid and solution-state NMR spectroscopy, it is clear that the major components of humin materials, from the DMSO-acid solvent, after the exhaustive extraction sequence, were composed of microbial and plant derived components, mainly long-chain aliphatic species (including fatty acids/ester, waxes, lipids and cuticular material), carbohydrate, peptides/proteins, lignin derivatives, lipoprotein and peptidoglycan (major structural components in bacteria cell walls). Black carbon or char materials were enriched in humic acids isolated at pH 7 and humic acids-like material isolated in the base-urea medium, indicating that urea can liberate char-derived material hydrogen bonded or trapped within the humin matrix.
Resumo:
Urea is the most used N fertilizer for upland rice, however, a great percentage of N loss can occur with the use of this fertilizer. The use of products that provide reduction of N loss for urea fertilizers can contribute to increase N use efficiency. The objective of this study was to determine the effect of N rates applied in the form of coated urea in the content and accumulation of N in dry biomass, apparent recovery of nitrogen and grain yield of upland rice. The experimental design was a randomized complete blocks arranged in a 4 x 3 + 1 factorial scheme. The treatments consisted of four sources of N fertilizer [1. Common urea; 2. Polymer-coated urea for slow release of N (PCU); 3. urea with the urease inhibitor N-(n-Butyl) thiophosphoric triamide (NBPT); and 4. urea coated with copper sulfate and boric acid as urease inhibitors (UCCB)], with three fertilization rates (30, 60 and 90 kg ha-1 of N). In addition, we included a control treatment without N application. Coated urea did not provide increases in rice grain yield in relation to common urea. The increasing amount of N resulted in significant increases in rice grain yield (from 3217 to 5548 kg ha-1, 2010/11, and from 3392 to 4560 kg ha-1, 2011/12). The apparent nitrogen recovery rate decreased with the increase in N applied doses.
Resumo:
The present work is focused on the synthesis and characterization of novel materials for hemodialysis applications. Cellulose acetate was chosen as base polymer for the preparation of porous Mixed Matrix Membrane adsorbers (MMMAs) and for the synthesis of hybrid ultrafiltration membranes. Hemodialysis is a renal replacement therapy used to eliminate,the waste products and excess fluids accumulating in the blood of people affected by an end stage renal disease. The main environmental drawback associated to it is the large water consumption. The MMMAs were prepared with the porpoise of eliminating waste metabolites (uremic toxins) from the spent dialysate solution, with the prospective limiting the consumption of water related to the process. Batch tests of MMMAs showed that the removal of uric acid is almost complete while the one of urea and creatinine is limited to a 20/30 %. The thinking behind the concept of MMMAs was aimed to develop a small a lab scale chromatographic cartridge to continuously remove uremic toxins from an aqueous feed solution. The cartridge was packed with MMMAs and tested with a mixture of toxins. Experiments results shown a promising removal capability of the system even if the necessity of a higher surface area to achieve better efficiency is denoted. The other important issue related to hemodialysis is the assessment of an overall mass transfer rates in hemodialyzers. The mass transfer correlations proposed in literature do not take into account the effect of permeation and are developed for turbulent flow regime. Therefore, hybrid cellulose acetate/Silica ultrafiltration membranes were prepared to characterize a surrogate system of an artificial kidney (AK) in terms of fluid mechanics and mass transfer. The effect of surface roughness and suction on the velocity profiles was determined and a new dimensionless mass transfer correlation accounting for permeation was developed.
Resumo:
The growing market of electrical cars, portable electronics, photovoltaic systems..etc. requires the development of efficient, low-cost, and low environmental impact energy storage devices (ESDs) including batteries and supercapacitors.. Due to their extended charge-discharge cycle, high specific capacitance, and power capabilities supercapacitors are considered among the most attractive ESDs. Over the last decade, research and development in supercapacitor technology have accelerated: thousands of articles have been published in the literature describing the electrochemical properties of the electrode materials and electrolyte in addition to separators and current collectors. Carbon-based supercapacitor electrodes materials have gained increasing attention due to their high specific surface area, good electrical conductivity, and excellent stability in harsh environments, as well as other characteristics. Recently, there has been a surge of interest in activated carbon derived from low-cost abundant sources such as biomass for supercapacitor electrode materials. Also, particular attention was given to a major challenging issue concerning the substitution of organic solutions currently used as electrolytes due to their highest electrochemical stability window even though their high cost, toxicity, and flammability. In this regard, the main objective of this thesis is to investigate the performances of supercapacitors using low cost abundant safe, and low environmental impact materials for electrodes and electrolytes. Several prototypes were constructed and tested using natural resources through optimization of the preparation of appropriate carbon electrodes using agriculture by-products waste or coal (i.e. Argan shell or Anthracite from Jerrada). Such electrodes were tested using several electrolyte formulations (aqueous and water in salt electrolytes) beneficing their non-flammability, lower cost, and environmental impact; the characteristics that provide a promising opportunity to design safer, inexpensive, and environmentally friendly devices compared to organic electrolytes.
Resumo:
MnHCF was synthesized by simple co-precipitation method. In this work we investigate the electrochemical behavior of manganese hexacyanoferrate in zinc sulfate (ZnSO4), ZnSO4+MnSO4 and zinc triflate (Zn(OTF)2) aqueous electrolytes. Electrochemical tests were performed by both El-cell which is designed for reflection investigation and coin cell. In cyclic voltammetry curves, we observed redox peaks of both Fe3+/2+ and Mn3+/2+ pairs. The results based on current shows that the capacity of battery is controlled by diffusion process in aqueous electrolyte system. MnHCF undergoes severe dissolution and zinc displacement during cycling. Compared to ZnSO4, anions of Zn (OTF)2 electrolyte are strongly adsorbed on the electrolyte surface, in turn hindering the water oxidation reaction and reducing the decomposition of MnHCF. The MnHCF/Zn battery using 3M Zn (OTF)2 delivers a specific capacity of 41 mAhg-1 at 50 mAg-1 while by using 3M ZnSO4+1M MnSO4 the specific capacity reaches to 400 mAhg-1 for the pure sample and around 250 mAhg-1 for the MnHCF+A. Our results suggest that the anions in the aqueous electrolyte are of great importance to optimize the electrochemical performance of metal hexacyanoferrates. The pre-addition of MnSO4 into ZnSO4 solution is capable of easing the Mn2+ dissolution from the cathode.
Resumo:
The introduction of spraying procedures to fabricate layer-by-layer (LbL) films has brought new possibilities for the control of molecular architectures and for making the LbL technique compliant with industrial processes. In this study we show that significantly distinct architectures are produced for dipping and spray-LbL films of the same components, which included DODAB/DPPG vesicles. The films differed notably in their thickness and stratified nature. The electrical response of the two types of films to aqueous solutions containing erythrosin was also different. With multidimensional projections we showed that the impedance for the DODAB/DPPG spray-LbL film is more sensitive to changes in concentration, being therefore more promising as sensing units. Furthermore, with surface-enhanced Raman scattering (SERS) we could ascribe the high sensitivity of the LbL films to adsorption of erythrosin.
Resumo:
Paraquat is a fast acting nonselective contact herbicide that is extensively used worldwide. However, the aqueous solubility and soil sorption of this compound can cause problems of toxicity in nontarget organisms. This work investigates the preparation and characterization of nanoparticles composed of chitosan and sodium tripolyphosphate (TPP) to produce an efficient herbicidal formulation that was less toxic and could be used for safer control of weeds in agriculture. The toxicities of the formulations were evaluated using cell culture viability assays and the Allium cepa chromosome aberration test. The herbicidal activity was investigated in cultivations of maize (Zea mays) and mustard (Brassica sp.), and soil sorption of the nanoencapsulated herbicide was measured. The efficiency association of paraquat with the nanoparticles was 62.6 ± 0.7%. Encapsulation of the herbicide resulted in changes in its diffusion and release as well as its sorption by soil. Cytotoxicity and genotoxicity assays showed that the nanoencapsulated herbicide was less toxic than the pure compound, indicating its potential to control weeds while at the same time reducing environmental impacts. Measurements of herbicidal activity showed that the effectiveness of paraquat was preserved after encapsulation. It was concluded that the encapsulation of paraquat in nanoparticles can provide a useful means of reducing adverse impacts on human health and the environment, and that the formulation therefore has potential for use in agriculture.
Resumo:
It is well known that long term use of shampoo causes damage to human hair. Although the Lowry method has been widely used to quantify hair damage, it is unsuitable to determine this in the presence of some surfactants and there is no other method proposed in literature. In this work, a different method is used to investigate and compare the hair damage induced by four types of surfactants (including three commercial-grade surfactants) and water. Hair samples were immersed in aqueous solution of surfactants under conditions that resemble a shower (38 °C, constant shaking). These solutions become colored with time of contact with hair and its UV-vis spectra were recorded. For comparison, the amount of extracted proteins from hair by sodium dodecyl sulfate (SDS) and by water were estimated by the Lowry method. Additionally, non-pigmented vs. pigmented hair and also sepia melanin were used to understand the washing solution color and their spectra. The results presented herein show that hair degradation is mostly caused by the extraction of proteins, cuticle fragments and melanin granules from hair fiber. It was found that the intensity of solution color varies with the charge density of the surfactants. Furthermore, the intensity of solution color can be correlated to the amount of proteins quantified by the Lowry method as well as to the degree of hair damage. UV-vis spectrum of hair washing solutions is a simple and straightforward method to quantify and compare hair damages induced by different commercial surfactants.
Resumo:
This work addresses the development and characterization of porous chitosan-alginate based polyelectrolyte complexes, obtained by using two different proportions of the biocompatible surfactant Pluronic F68. These biomaterials are proposed for applications as biodegradable and biocompatible wound dressing and/or scaffolds. The results indicate that thickness, roughness, porosity and liquid uptake of the membranes increase with the amount of surfactant used, while their mechanical properties and stability in aqueous media decrease. Other important properties such as color and surface hydrophilicity (water contact angle) are not significantly altered or did not present a clear tendency of variation with the increase of the amount of surfactant added to the polyelectrolyte complexes, such as real density, average pore diameter, total pore volume and surface area. The prepared biomaterials were not cytotoxic to L929 cells. In conclusion, it is possible to tune the physicochemical properties of chitosan-alginate polyelectrolyte complexes, through the variation of the proportion of surfactant (Pluronic F68) added to the mixture, so as to enable the desired application of these biomaterials.
Resumo:
Crotamine is one of the main constituents of the venom of the South American rattlesnake Crotalus durissus terrificus. Here we sought to investigate the inflammatory and toxicological effects induced by the intrahippocampal administration of crotamine isolated from Crotalus whole venom. Adult rats received an intrahippocampal infusion of crotamine or vehicle and were euthanized 24 h or 21 days after infusion. Plasma and brain tissue were collected for biochemical analysis. Complete blood count, creatinine, urea, glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), creatine-kinase (CK), creatine kinase-muscle B (CK-MB) and oxidative parameters (assessed by DNA damage and micronucleus frequency in leukocytes, lipid peroxidation and protein carbonyls in plasma and brain) were quantified. Unpaired and paired t-tests were used for comparisons between saline and crotamine groups, and within groups (24 h vs. 21 days), respectively. After 24 h crotamine infusion promoted an increase of urea, GOT, GPT, CK, and platelets values (p ≤ 0.01), while red blood cells, hematocrit and leukocytes values decreased (p ≤ 0.01). Additionally, 21 days after infusion crotamine group showed increased creatinine, leukocytes, TBARS (plasma and brain), carbonyl (plasma and brain) and micronucleus compared to the saline-group (p ≤ 0.01). Our findings show that crotamine infusion alter hematological parameters and cardiac markers, as well as oxidative parameters, not only in the brain, but also in the blood, indicating a systemic pro-inflammatory and toxicological activity. A further scientific attempt in terms of preserving the beneficial activity over toxicity is required.