947 resultados para APP, Altern, Alzheimer, Neuroprotektion
Resumo:
The density of diffuse, primitive and classic beta/A4 protein deposits was estimated in sulci and gyri in the frontal cortex and parahippocampal gyrus (PHG) in 8 cases of Alzheimer's disease. Total beta/A4 deposit density was similar in the frontal cortex and PHG but the ratio of primitive and classic deposits to the total was greater in the PHG compared with the frontal cortex. Total beta/A4 deposit density was greater in the depths of the sulci, but the proportions of the various beta/A4 subtypes were similar in sulci and gyri. Hence, increased density of primitive and classic deposits in the PHG could reflect enhanced conversion of diffuse to mature deposits whereas increased density of mature beta/A4 subtypes in sulci versus gyri may reflect increased beta/A4 deposition in the sulci.
Resumo:
A culster analysis was performed on 78 cases of Alzheimer's disease (AD) to identify possible pathological subtypes of the disease. Data on 47 neuropathological variables, inculding features of the gross brain and the density and distribution of senile plaques (SP) and neurofibrillary tangles (NFT) were used to describe each case. Cluster analysis is a multivariate statistical method which combines together in groups, AD cases with the most similar neuropathological characteristics. The majority of cases (83%) were clustered into five such groups. The analysis suggested that an initial division of the 78 cases could be made into two major groups: (1) a large group (68%) in which the distribution of SP and NFT was restricted to a relatively small number of brain regions, and (2) a smaller group (15%) in which the lesions were more widely disseminated throughout the neocortex. Each of these groups could be subdivided on the degree of capillary amyloid angiopathy (CAA) present. In addition, those cases with a restricted development of SP/NFT and CAA could be divided further into an early and a late onset form. Familial AD cases did not cluster as a separate group but were either distributed between four of the five groups or were cases with unique combinations of pathological features not closely related to any of the groups. It was concluded that multivariate statistical methods may be of value in the classification of AD into subtypes. © 1994 Springer-Verlag.
Resumo:
Since the earliest descriptions of Alzheimer's disease (AD), the presence of senile plaques (SP) and neurofibrillary tangles (NFT) have been regarded as the typical pathological hallmarks of the disease. Studies over the last twenty years, however, have reported a considerable degree of heterogeneity within the AD phenotype and as a consequence, an overlap between the pathological features of AD not only with normal aging, but also with disorders related to AD. This review discusses: 1) the degree of heterogeneity within AD, 2) the concept of an 'interface' between disorders, 3) the nature and degree of the interface between AD and normal aging, vascular dementia (VD), the tauopathies, synucleinopathies, and prion disease, and 4) whether the original status of AD should be retained or whether AD, normal aging, and the related disorders should be regarded as representing a 'continuum' of neuropathological change.
Resumo:
This study tested whether the laminar distribution of the β-amyloid (Aβ) deposits in dementia with Lewy bodies (DLB) cases with significant Alzheimer's disease (AD) pathology (DLB/AD) was similar to "pure" AD. In DLB/AD, the maximum density of the diffuse and primitive deposits occurred either in the upper laminae or a bimodal distribution was present with density peaks in the upper and lower laminae. A bimodal distribution of the classic Aβ deposits was also observed. Compared with AD, DLB/AD cases had fewer primitive deposits relative to the diffuse and classic deposits; the primitive deposits exhibited a bimodal distribution more frequently, and the diffuse deposits occurred more often in the upper laminae. These results suggest that Aβ pathology in DLB/AD may not simply represent the presence of associated AD. © 2006 Sage Publications.
Resumo:
β-Amyloid (Aβ) deposition in regions of the temporal lobe in patients with dementia with Lewy bodies (DLB) was compared with elderly, non-demented (ND) cases and with Alzheimer's disease (AD). The distribution, density and clustering patterns of diffuse, primitive and classic Aβ deposits were similar in 'pure' DLB and ND cases. The distribution of Aβ deposits and the densities of the diffuse and primitive deposits were similar in 'mixed' DLB/AD cases compared with AD. However, the density of the classic deposits was significantly lower in DLB/AD compared with AD. In addition, the primitive Aβ deposits occurred more often in small, regularly spaced clusters in the tissue and less often in a single large cluster in DLB/AD compared with 'pure' AD. These results suggest that pure DLB and AD are distinct disorders which can coexist in some patients. However, the Aβ pathology of DLB/AD cases is not identical to that observed in patients with AD alone. (C) 2000 S. Karger AG, Basel.
Resumo:
Three hypotheses have been proposed to explain neuropathological heterogeneity in Alzheimer's disease (AD): the presence of distinct subtypes ('subtype hypothesis'), variation in the stage of the disease ('phase hypothesis') and variation in the origin and progression of the disease ('compensation hypothesis'). To test these hypotheses, variation in the distribution and severity of senile plaques (SP) and neurofibrillary tangles (NFT) was studied in 80 cases of AD using principal components analysis (PCA). Principal components analysis using the cases as variables (Q-type analysis) suggested that individual differences between patients were continuously distributed rather than the cases being clustered into distinct subtypes. In addition, PCA using the abundances of SP and NFT as variables (R-type analysis) suggested that variations in the presence and abundance of lesions in the frontal and occipital lobes, the cingulate gyrus and the posterior parahippocampal gyrus were the most important sources of heterogeneity consistent with the presence of different stages of the disease. In addition, in a subgroup of patients, individual differences were related to apolipoprotein E (ApoE) genotype, the presence and severity of SP in the frontal and occipital cortex being significantly increased in patients expressing apolipoprotein (Apo)E allele ε4. It was concluded that some of the neuropathological heterogeneity in our AD cases may be consistent with the 'phase hypothesis'. A major factor determining this variation in late-onset cases was ApoE genotype with accelerated rates of spread of the pathology in patients expressing allele ε4.
Resumo:
Objective - to examine the effect of medications with anticholinergic effects on cognitive impairment and deterioration in Alzheimer's dementia (AD). Methods - cognitive function was measured at baseline and at 6- and 18-month follow-up using the Mini-Mental State Exam (MMSE), the Severe Impairment Battery (SIB) and the Alzheimer's Disease Assessment Battery, Cognitive subsection (ADAS-COG) in a cohort study of 224 participants with AD. Baseline anticholinergic Burden score (ABS) was measured using the Anticholinergic Burden scale and included all prescribed and over the counter medication. Results - the sample was 224 patients with Alzheimer's dementia and 71.4% were women. Their mean age was 81.0 years [SD 7.4 (range 55–98)]. The mean number of medications taken was 3.6 (SD 2.4) and the mean anticholinergic load was 1.1 (SD 1.4, range 0–7). The total number of drugs taken and anticholinergic load correlated (rho = 0.44; P < 0.01). There were no differences in MMSE and other cognitive functioning at either 6 or 18 months after adjusting for baseline cognitive function, age, gender and use of cholinesterase inhibitors between those with, and those without high anticholinergenic load. Conclusions - medications with anticholinergic effect in patients with AD were not found to effect deterioration in cognition over the subsequent 18 months. Our study did not support a continuing effect of these medications on people with AD who are established on them.
Resumo:
The density of senile plaques (SP) and neurofibrillary tangles (NFT) was studied in Glees and Marsland stained sections of the hippocampus and parahippocampal gyrus (PHG) in 20 pateints with Alzheimer's disease. In addition, in six of the patients, the density of beta/A4 protein deposits, as revealed by immunohistochemistry and neurofibrillary changes demonstrated with the Gallyas stain, were studied in adjacent sections. The density of Glees SP and beta/A4 deposits was significantly greater in area CA1 of the hippocampus and in the subiculum than in the PHG. Hence, neurofibrillary degeneration appears to be a more important lesion than beta/A4 deposition in the hippocampus compared with the PHG. In addition, the detailed distribution of the lesions in the hippocampus could be explained if beta/A4/SP and NFT occur on the axon terminals and in the cell bodies respectively of the same neurons.
Resumo:
In Alzheimer's disease (AD), neurofibrillary tangles (NFT) occur within neurons in both the upper and lower cortical laminae. Using a statistical method that estimates the size and spacing of NFT clusters along the cortex parallel to the pia mater, two hypotheses were tested: 1) that the cluster size and distribution of the NFT in gyri of the temporal lobe reflect degeneration of the feedforward (FF) and feedback (FB) cortico-cortical pathways, and 2) that there is a spatial relationship between the clusters of NFT in the upper and lower laminae. In 16 temporal lobe gyri from 10 cases of sporadic AD, NFT were present in both the upper and lower laminae in 11/16 (69%) gyri and in either the upper or lower laminae in 5/16 (31%) gyri. Clustering of the NFT was observed in all gyri. A significant peak-to-peak distance was observed in the upper laminae in 13/15 (87%) gyri and in the lower laminae in 8/ 12 (67%) gyri, suggesting a regularly repeating pattern of NFT clusters along the cortex. The regularly distributed clusters of NFT were between 500 and 800 μm in size, the estimated size of the cells of origin of the FF and FB cortico-cortical projections, in the upper laminae of 6/13 (46%) gyri and in the lower laminae of 2/8 (25%) gyri. Clusters of NFT in the upper laminae were spatially correlated (in phase) with those in the lower laminae in 5/16 (31%) gyri. The clustering patterns of the NFT are consistent with their formation in relation to the FF and FB cortico-cortical pathways. In most gyri, NFT clusters appeared to develop independently in the upper and lower laminae.
Resumo:
Various hypotheses could explain the relationship between beta-amyloid (Abeta) deposition and the vasculature in Alzheimer's disease (AD). Amyloid deposition may reduce capillary density, affect endothelial cells of blood vessels, result in diffusion from blood vessels, or interfere with the perivascular clearance mechanism. Hence, the spatial pattern of the classic ('cored') type of Abeta deposit was studied in the upper laminae (I,II/III) of the superior frontal gyrus in nine cases of sporadic AD (SAD). Sections were immunostained with antibodies against Abeta and with collagen IV to study the relationships between the spatial distribution of the classic deposits and the blood vessel profiles. Both the classic deposits and blood vessel profiles were distributed in clusters. In all cases, there was a positive spatial correlation between the clusters of the classic deposits and the larger diameter (>10 microm) blood vessel profiles and especially the vertically penetrating arterioles. In only 1 case, was there a significant spatial correlation between the clusters of the classic deposits and the smaller diameter (<10 microm) capillaries. There were no negative correlations between the density of Abeta deposits and the smaller diameter capillaries. In 9/11 cases, the clusters of the classic deposits were significantly larger than those of the clusters of the larger blood vessel profiles. In addition, the density of the classic deposits declined as a negative exponential function with distance from a vertically penetrating arteriole. These results suggest that the classic Abeta deposits cluster around the larger blood vessels in the upper laminae of the frontal cortex. This aggregation could result from diffusion of proteins from blood vessels or from overloading the system of perivascular clearance from the brain.
Resumo:
Objective: To test the hypothesis that the clusters of senile plaques (SP) and neurofibrillary tangles (NFT) in patients with Alzheimer's disease (AD) are spatially associated as predicted by the 'Amyloid Cascade Hypothesis'. Methods: The spatial association between the SP and NFT was studied in the cerebral cortex and hippocampus in six cases of sporadic Alzheimer's disease (AD) using contingency tables. The coefficient C7 was used as an index of spatial association while chi-square with correction for continuity was used as a test of significance. Results: In the brain regions analysed, values of C7 were in the range -0.31 to +0.32 but a statistically significant spatial association between SP and NFT was present in only 8/39 (21%) regions. The degree of spatial association between the SP and NFT was similar in dfferent brain regions and did not vary with apolipoprotein ε genotype of the patient. However, the magnitude of C7 in a region was positively correlated with the density of the NFT and with the total density of SP and NFT but not with the density of SP alone. Conclusion: There was little evidence that SP and NFT were spatially associated except in brain areas with high densities of lesions. The data support the hypothesis that SP and NFT are distributed relatively independently in the cerebral cortex and hippocampus and therefore, could be distinct phenomena in AD.
Resumo:
Similar pathological processes may be involved in the deposition of extracellular proteins in the brains of patients with Creutzfeldt-Jakob disease (CJD) and Alzheimer's disease (AD). Hence, this study compared the spatial patterns of prion protein (PrP) deposits in the cerebral cortex and hippocampus in cases of sporadic CJD with those of β-amyloid (Aβ) deposits in sporadic AD. PrP and Aβ deposits were aggregated into clusters and, in 90% of brain areas in CJD and 57% in AD, the clusters were regularly distributed parallel to the tissue boundary. In a significant proportion of cortical analyses, the mean diameter of the clusters of PrP and Aβ deposits were similar to those of the cells of origin of the cortico-cortical pathways. Aβ deposits in AD were distributed more frequently in larger-sized clusters than PrP deposits in CJD. In addition, in the hippocampus and dentate gyrus, clustering of Aβ deposits was observed in AD but PrP deposits were rare in these regions in CJD. The size, location and distribution of the extracellular protein deposits within the cortex of both disorders was consistent with the degeneration of the cortico-cortical pathways. Furthermore, spread of the pathology along these pathways may be a pathogenic feature common to CJD and AD. © 2001 Elsevier Science Ireland Ltd.
Resumo:
In Alzheimer's disease (AD) brain, beta-amyloid (Abeta) deposits and neurofibrillary tangles (NFT) are not randomly distributed but exhibit a spatial pattern, i.e., a departure from randomness towards regularity or clustering. Studies of the spatial pattern of a lesion may contribute to an understanding of its pathogenesis and therefore, of AD itself. This article describes the statistical methods most commonly used to detect the spatial patterns of brain lesions and the types of spatial patterns exhibited by ß-amyloid deposits and NFT in the cerebral cortex in AD. These studies suggest that within the cerebral cortex, Abeta deposits and NFT exhibit a similar spatial pattern, i.e., an aggregation of individual lesions into clusters which are regularly distributed parallel to the pia mater. The location, size and distribution of these clusters supports the hypothesis that AD is a 'disconnection syndrome' in which degeneration of specific cortical pathways results in the formation of clusters of NFT and Abeta deposits. In addition, a model to explain the development of the pathology within the cerebral cortex is proposed.