925 resultados para ANIMAL FEED
Resumo:
Serum erythropoietic activity and reticulocyte response to anemia were investigated using a rabbit model. In hemolytic anemia, induced by injections of phenylhydrazine on Day 0 the hemoglobin reached a nadir (mean, 6.23 g/dl) on Day 4 when SEA was maximal (mean, 765 mU/ml). In animals venesected on Day 0 and Day 1 to produce anemia of equal severity, the SEA was maximal (mean 235 mU/ml) on Day 2. In both groups the reticulocyte response peaked on Day 7--at 34% for the hemolytic group and 21% for the venesected group. The 2,3-diphosphoglycerate, measured on Day 4, was significantly reduced in the PHZ-treated group. In the venesected group the 2,3-DPG increased between Day 0 and Day 4. There were no concurrent changes in acid-base balance. These results imply that the degree of anemia is only one of the factors which influence the level of circulating SEA.
Resumo:
Pyrrolizidine alkaloids (PAs) are a group of plant secondary metabolites with carcinogenic and hepatotoxic properties. When PA-producing plants contaminate crops, toxins can be transferred through the food chain and cause illness in humans and animals, most notably hepatic veno-occlusive disease. Honey has been identified as a direct risk of human exposure. The European Food Safety Authority has recently identified four groups of PAs that are of particular importance for food and feed: senecionine-type, lycopsamine-type, heliotrine-type and monocrotaline-type. Liquid or gas chromatography methods are currently used to detect PAs but there are no rapid screening assays available commercially. Therefore, the aim of this study was to develop a rapid multiplex ELISA test for the representatives of three groups of alkaloids (senecionine, lycopsamine and heliotrine types) that would be used as a risk-management tool for the screening of these toxic compounds in food and feed. The method was validated for honey and feed matrices and was demonstrated to have a detection capability less than 25 µg/kg for jacobine, lycopsamine, heliotrine and senecionine. The zinc reduction step introduced to the extraction procedure allows for the additional detection of the presence of N-oxides of PAs. This first multiplex immunoassay for PA detection with N-oxide reduction can be used for the simultaneous screening of 21 samples for >12 PA analytes. Honey samples (n?=?146) from various origins were analysed for PA determination. Six samples were determined to contain measurable PAs >25 µg/kg by ELISA which correlated to >10 µg/kg by LC-MS/MS.
Resumo:
Nasal congestion is one of the most troublesome symptoms of many upper airways diseases. We characterized the effect of selective α2c-adrenergic agonists in animal models of nasal congestion. In porcine mucosa tissue, compound A and compound B contracted nasal veins with only modest effects on arteries. In in vivo experiments, we examined the nasal decongestant dose-response characteristics, pharmacokinetic/pharmacodynamic relationship, duration of action, potential development of tolerance, and topical efficacy of α2c-adrenergic agonists. Acoustic rhinometry was used to determine nasal cavity dimensions following intranasal compound 48/80 (1%, 75 µl). In feline experiments, compound 48/80 decreased nasal cavity volume and minimum cross-sectional areas by 77% and 40%, respectively. Oral administration of compound A (0.1-3.0 mg/kg), compound B (0.3-5.0 mg/kg), and d-pseudoephedrine (0.3 and 1.0 mg/kg) produced dose-dependent decongestion. Unlike d-pseudoephedrine, compounds A and B did not alter systolic blood pressure. The plasma exposure of compound A to produce a robust decongestion (EC(80)) was 500 nM, which related well to the duration of action of approximately 4.0 hours. No tolerance to the decongestant effect of compound A (1.0 mg/kg p.o.) was observed. To study the topical efficacies of compounds A and B, the drugs were given topically 30 minutes after compound 48/80 (a therapeutic paradigm) where both agents reversed nasal congestion. Finally, nasal-decongestive activity was confirmed in the dog. We demonstrate that α2c-adrenergic agonists behave as nasal decongestants without cardiovascular actions in animal models of upper airway congestion.
Resumo:
The detection and assessment of pain in animals is crucial to improving their welfare in a variety of contexts in which humans are ethically or legally bound to do so. Thus clear standards to judge whether pain is likely to occur in any animal species is vital to inform whether to alleviate pain or to drive the refinement of procedures to reduce invasiveness, thereby minimizing pain. We define two key concepts that can be used to evaluate the potential for pain in both invertebrate and vertebrate taxa. First, responses to noxious, potentially painful events should affect neurobiology, physiology and behaviour in a different manner to innocuous stimuli and subsequent behaviour should be modified including avoidance learning and protective responses. Second, animals should show a change in motivational state after experiencing a painful event such that future behavioural decision making is altered and can be measured as a change in conditioned place preference, self-administration of analgesia, paying a cost to access analgesia or avoidance of painful stimuli and reduced performance in concurrent events. The extent to which vertebrate and selected invertebrate groups fulfil these criteria is discussed in light of the empirical evidence and where there are gaps in our knowledge we propose future studies are vital to improve our assessment of pain. This review highlights arguments regarding animal pain and defines criteria that demonstrate, beyond a reasonable doubt, whether animals of a given species experience pain.
Resumo:
Terrestrial invertebrates constitute most of described animal biodiversity and soil is a major reservoir of this diversity. In the classical attempt to understand the processes supporting biodiversity, ecologists are currently seeking to unravel the differential roles of environmental filtering and competition for resources in niche partitioning processes: these processes are in principle distinct although they may act simultaneously, interact at multiple spatial and temporal scales, and are often confounded in studies of soil communities. We used a novel combination of methods based on stable isotopes and trait analysis to resolve these processes in diverse oribatid mite assemblages at spatial
scales at which competition for resources could in principle be a major driver. We also used a null model approach based on a general neutral model of beta diversity. A large and significant fraction of community variation was explainable in terms of linear and periodic spatial structures in the distribution of organic C, N and soil structure: species were clearly arranged along an environmental, spatially structured gradient. However, competition related trait differences did not map onto the distances separating species along the environmental gradient and neutral models provided a satisfying approximation of beta diversity patterns. The results represent the first robust evidence
that in very diverse soil arthropod assemblages resource-based niche partitioning plays a minor role while environmental filtering remains a fundamental driver of species distribution.
Resumo:
Two experiments were conducted to examine the ‘long-term’ effect of feed space allowance and period of access to feed on dairy cow performance. In Experiment 1, three horizontal feed space allowances (20, 40 and 60 cm cow−1) were examined over a 127-d period (14 cows per treatment). In Experiment 2, 48 dairy cows were used in a continuous design (10-week duration) 2 × 2 factorial design experiment comprising two horizontal feed space allowances (15 and 40 cm cow−1), and two periods of access to feed (unrestricted and restricted). With the former, uneaten feed was removed at 08·00 h, while feeding took place at 09·00 h. With the latter, uneaten feed was removed at 06·00 h, while feeding was delayed until 12·00 h. Mean total dry-matter (DM) intakes were 19·0, 18·7 and 19·3 kg cow−1 d−1 with the 20, 40 and 60 cm cow−1 treatments in Experiment 1, and 18·1 and 18·2 kg cow−1 d−1 with the ‘restricted feeding time’ treatments, and 17·8 and 18·1 kg d−1 with the ‘unrestricted feeding time’ treatments (15 and 40 cm respectively) in Experiment 2. None of milk yield, milk composition, or end-of-study live weight or condition score were significantly affected by treatment in either experiment (P > 0·05), while fat + protein yield was reduced with the 15-cm treatment in Experiment 2 (P < 0·05). When access to feed was restricted by space or time constraints, cows modified their time budgets and increased their rates of intake.
Resumo:
Diabetic retinopathy (DR) is a major cause of visual impairment worldwide. The precise pathogenesis of this diabetic complication remains ill-defined and this is reflected in the limited options for preventing development and progression of this disease. The value of animal models to understand and treat human disease is well recognised and this chapter focuses on the range of in vivo model systems that are available for studying DR. These models have been developed over many decades and utilised to aid our understanding of what causes DR, about how microvascular and neural lesions develop and to provide evidence for key cellular and molecular mechanisms that drive this pathology. A wide range of animal models of DR are currently available, each with advantages and disadvantages that need to be understood and evaluated for their scientific and clinical value. As transgenic and imaging technology improves, more models will be developed and they will continue to play a critical role in the development of new therapeutic approaches to DR by providing robust, preclinical evidence prior to clinical trial.