979 resultados para ANGLE GRAIN-BOUNDARIES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The linear diffusion-reaction theory with finite interface kinetics is employed to describe the dissolution and the growth processes. The results show that it is imperative to consider the effect of the moving interfaces on the concentration distribution at the growth interface for some cases. For small aspect ratio and small gravity magnitude, the dissolution and the growth interfaces must be treated as the moving boundaries within an angle range of 0 degrees < gamma < 50 degrees in this work. For large aspect ratio or large gravity magnitude, the effect of the moving interfaces on the concentration distribution at the growth interface can be neglected except for gamma < - 50 degrees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, the uniform lying helix (ULH) liquid crystal texture, required for the flexoelectro-optic effect, is polymer stabilized by the addition of a small percentage of reactive mesogen to a high-tilt-angle (φ>60°) bimesogenic chiral nematic host. The electro-optic response is measured for a range of reactive mesogen concentration mixtures, and compared to the large-tilt-angle switch of the pure chiral nematic mixture. The optimum concentration of reactive mesogen, which is found to provide ample stabilization of the texture with minimal impact on the electro-optic response, is found to be approximately 3%. Our results indicate that polymer stabilization of the ULH texture using a very low concentration of reactive mesogen is a reliable way of ruggedizing flexoelectro-optic devices without interfering significantly with the electro-optics of the effect, negating the need for complicated surface alignment patterns or surface-only polymerization. The polymer stabilization is shown to reduce the temperature dependence of the flexoelectro-optic response due to "pinning" of the chiral nematic helical pitch. This is a restriction of the characteristic thermochromic behavior of the chiral nematic. Furthermore, selection of the temperature at which the sample is ultraviolet cured allows the tilt angle to be optimized for the entire chiral nematic temperature range. The response time, however, remains more sensitive to operating temperature than curing temperature. This allows the sample to be cured at low temperature and operated at high temperature, providing simultaneous optimization of these two previously antagonistic performance aspects. © 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstructures and mechanical properties have been studied in aluminium containing a fine dispersion of alumina particles, deformed by cold-rolling to strains between 1.4 and 3.5. The microstructure was characterised by TEM. The deformation structures evolved very rapidly, forming a nanostructured material, with fine subgrains about 0.2 μm in diameter and a fraction of high-angle boundaries which was already high at a strain of 1.4, but continued to increase with rolling strain. The yield stress and ductility of the rolled materials were measured in tension, and properties were similar for all materials. Yield stress measurements were correlated with estimates made using microstructural models. The role of small particles in forming and stabilising the deformation structure is discussed. This nanostructured cold-deformed alloy has mechanical properties which are usefully enhanced at comparatively low cost. This gives it, and similar particle-strengthened alloys, good potential for commercial exploitation. © 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The refractive index and thickness of SiO2 thin films naturally grown on Si substrates were determined simultaneously within the wavelength range of 220-1100 nm with variable-angle spectroscopic ellipsometry. Different angles of incidence and wavelength ranges were chosen to enhance the analysis sensitivity for more accurate results. Several optical models describing the practical SiO2-Si system were investigated, and best results were obtained with the optical model, including an interface layer between SiO2 and Si, which proved the existence of the interface layer in this work as described in other publications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deformation microstructures have been investigated in nanocrystalline (nc) Ni with grain sizes in the 50-100 nm range. It was found that deformation twinning started to occur in grains of similar to 90 nm, and its propensity increased with decreasing grain size. In most of the nc grains dislocations were observed as well, in the form of individual dislocations and dipoles. It is concluded that dislocation-mediated plasticity dominates for grain sizes in the upper half, i.e. 50-100 nm, of the nanocrystalline regime. (C) 2007 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A long-standing controversy exists between molecular dynamics simulations and experiments on the twinning propensity of nanocrystalline (NC) face-centered-cubic metals. For example, three-dimensional molecular dynamics simulations rarely observed twins in NC Ni, whereas experiments readily observed them. Here this discrepancy is resolved by experimental observation of an inverse grain-size effect on twinning. Specifically, decreasing the grain size first promotes twinning in NC Ni and then hinders twinning due to the inverse grain-size effect. Interestingly, no inverse grain-size effect exists on stacking fault formation. These observations are explained by generalized planar fault energies and grain-size effect on partial emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The localized shear deformation in the 2024 and 2124 Al matrix composites reinforced with SiC particles was investigated with a split Hopkinson pressure bar (SHPB) at a strain rate of about 2.0x10(3) s(-1). The results showed that the occurrence of localized shear deformation is sensitive to the size of SiC particles. It was found that the critical strain, at which the shear localization occurs, strongly depends on the size and volume fraction of SiC particles. The smaller the particle size, the lower the critical strain required for the shear localization. TEM examinations revealed that Al/SiCp interfaces are the main sources of dislocations. The dislocation density near the interface was found to be high and it decreases with the distance from the particles. The Al matrix in shear bands was highly deformed and severely elongated at low angle boundaries. The Al/SiCp interfaces, particularly the sharp corners of SiC particles, provide the sites for microcrack initiation. Eventual fracture is caused by the growth and coalescence of microcracks along the shear bands. It is proposed that the distortion free equiaxed grains with low dislocation density observed in the center of shear band result from recrystallization during dynamic deformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A transmission electron microscopy (TEM) study has been carried out to uncover how dislocations and twins accommodate large plastic strains and accumulate in very small nanocrystalline Ni grains during low-temperature deformation. We illustrate dislocation patterns that suggest preferential deformation and nonuniform defect storage inside the nanocrystalline grain. Dislocations are present in individual and dipole configurations. Most dislocations are of the 60 degrees type and pile up on (111) slip planes. Various deformation responses, in the forms of dislocations and twinning, may simultaneously occur inside a nanocrystalline grain. Evidence for twin boundary migration has been obtained. The rearrangement and organization of dislocations, sometimes interacting with the twins, lead to the formation of subgrain boundaries, subdividing the nanograin into mosaic domain structures. The observation of strain (deformation)-induced refinement contrasts with the recently reported stress-assisted grain growth in nanocrystalline metals and has implications for understanding the stability and deformation behavior of these highly nonequilibrium materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical properties of film-substrate systems have been investigated through nano-indentation experiments in our former paper (Chen, S.H., Liu, L., Wang, T.C., 2005. Investigation of the mechanical properties of thin films by nano-indentation, considering the effects of thickness and different coating-substrate combinations. Surf. Coat. Technol., 191, 25-32), in which Al-Glass with three different film thicknesses are adopted and it is found that the relation between the hardness H and normalized indentation depth h/t, where t denotes the film thickness, exhibits three different regimes: (i) the hardness decreases obviously with increasing indentation depth; (ii) then, the hardness keeps an almost constant value in the range of 0.1-0.7 of the normalized indentation depth h/t; (iii) after that, the hardness increases with increasing indentation depth. In this paper, the indentation image is further investigated and finite element method is used to analyze the nano-indentation phenomena with both classical plasticity and strain gradient plasticity theories. Not only the case with an ideal sharp indenter tip but also that with a round one is considered in both theories. Finally, we find that the classical plasticity theory can not predict the experimental results, even considering the indenter tip curvature. However, the strain gradient plasticity theory can describe the experimental data very well not only at a shallow indentation depth but also at a deep depth. Strain gradient and substrate effects are proved to coexist in film-substrate nano-indentation experiments. (c) 2006 Elsevier Ltd. All rights reserved.