972 resultados para ANGIOTENSIN-CONVERTING-ENZYME
Resumo:
Glitazones are efficient insulin sensitizers that blunt the effects of angiotensin II (ANG II) in the rat. Sodium chloride is another important modulator of the systemic and renal effects of ANG II. Whether glitazones interfere with the interaction between sodium and the response to ANG II is not known. Therefore, we investigated the effects of pioglitazone on the relationship between sodium and the systemic and renal effects of ANG II in rats. Pioglitazone, or vehicle, was administered for 4 wk to 8-wk-old obese Zucker rats. Animals were fed a normal-sodium (NS) or a high-sodium (HS) diet. Intravenous glucose tolerance tests, systemic and renal hemodynamic responses to ANG II, and the renal ANG II binding and expression of ANG II type 1 (AT(1)) receptors were measured. The results of our study were that food intake and body weight increased, whereas blood pressure, heart rate, filtration fraction, and insulin levels decreased significantly with pioglitazone in obese rats on both diets. Pioglitazone blunted the systemic response to ANG II and abolished the increased responsiveness to ANG II induced by a HS diet. Pioglitazone modified the renal hemodynamic response to changes in salt intake while maintaining a lower filtration fraction with ANG II perfusion. These effects were associated with a decrease in the number and expression of the AT(1) receptor in the kidney. In conclusion, these data demonstrate that the peroxisome proliferator-activated receptor-gamma agonist pioglitazone modifies the physiological relationship between sodium chloride and the response to ANG II in insulin-resistant rats.
Resumo:
Camurati-Engelmann disease is characterized by hyperostosis of the long bones and the skull, muscle atrophy, severe limb pain, and progressive joint contractures in some patients. It is caused by heterozygous mutations in the transforming growth factor β1 (TGFβ1) believed to result in improper folding of the latency-associated peptide domain of TGFβ1 and thus in increased or deregulated bioactivity. Losartan, an angiotensin II type 1 receptor antagonist, has been found to downregulate the expression of TGFβ type 1 and 2 receptors. Clinical trials with losartan have shown a benefit in Marfan syndrome, while trials are underway for Duchenne muscular dystrophy and other myopathies associated with TGFβ1 signaling. We hypothesized that due to its anti-TGFβ1 activity, losartan might be beneficial in Camurati-Engelmann disease. This report concerns a boy who presented at age 13 years with severe limb pain and difficulty in walking. Clinical and radiographic evaluation results were compatible with Camurati-Engelmann disease and the diagnosis was confirmed by mutation analysis (c.652C > T [p.Arg218Cys]). The boy underwent an experimental treatment with losartan at a dosage of 50 mg/day, orally. During the treatment period of 18 months, the intensity and frequency of limb pain decreased significantly (as shown by a pain diary), and muscle strength improved, allowing the boy to resume walking and climbing stairs. No obvious side effects were observed. We cautiously conclude that TGFβ1 inhibition with losartan deserves further evaluation in the clinical management of Camurati-Engelmann disease.
Resumo:
Aim: Fabry disease is an X-linked genetic disorder due to deficiency of the lysosomal enzyme a-galactosidase A, which leads to the accumulation of neutral glycosphingolipids within the lysosomes of almost all tissues. Clinical manifestations usually include acroparaesthesia, renal insufficiency and cardiomyopathy. Recently, pulmonary manifestations consisting of progressive obstructive airway disease have been reported. The aim of this study was to analyse the cross-sectional prevalence of airflow obstruction in a Swiss cohort of patients, and in selected cases, to evaluate the impact of enzyme replacement therapy (ERT) with agalsidase alfa (ReplagalTM; TKT - 5S). Methods: Forty-four patients (27 men, 17 women) were included in the study and received pulmonary function testing. Fifteen patients underwent spirometry after ERT. Results: Twelve patients (nine men) had chronic obstructive pulmonary disease according to the Global Obstructive Lung Disease (GOLD) initiative criteria: forced expiratory volume (FEV1)/forced vital capacity (FVC) 50.7), but only one was an active smoker and one a previous smoker. FEV1/ FVC as percentage predicted was weakly correlated with age (r=0.42, p=0.005, calculated by Pearson product-moment correlation), demonstrating that airway obstruction occurs in the late stages of the disease. Median FEV1 in patients with obstruction was 67% of predicted (range, 45-90%). Reversibility of FEV1 after b2-agonist inhalation never exceeded 8% of predicted. Diffusing capacity of the lung for carbon monoxide (DLCO) was measured in 13 individuals with a median of 88% of predicted (range, 39-125%). After 15+9 months of ERT, spirometry measurements were recorded in 15 patients. Decline in FEV1 was -2+5% of predicted. (p40.05, measured by the Wilcoxon signed-rank test). Median change in DLCO was -10% of predicted (-40 to +25%, p40.05). High resolution computed tomography scans demonstrated a moderate thickening of the bronchial wall in affected individuals, without evidence of emphysema. Conclusion: We conclude that Fabry disease can be complicated by significant airway obstruction, particularly in patients in the advanced stages of the disease, and that in the period studied, ERT had no demonstrable impact on pulmonary function.
Resumo:
Regulation of the epithelial Na(+) channel (ENaC) by ubiquitylation is controlled by the activity of two counteracting enzymes, the E3 ubiquitin-protein ligase Nedd4-2 (mouse ortholog of human Nedd4L) and the ubiquitin-specific protease Usp2-45. Previously, Usp2-45 was shown to decrease ubiquitylation and to increase surface function of ENaC in Xenopus laevis oocytes, whereas the splice variant Usp2-69, which has a different N-terminal domain, was inactive toward ENaC. It is shown here that the catalytic core of Usp2 lacking the N-terminal domain has a reduced ability relative to Usp2-45 to enhance ENaC activity in Xenopus oocytes. In contrast, its catalytic activity toward the artificial substrate ubiquitin-AMC is fully maintained. The interaction of Usp2-45 with ENaC exogenously expressed in HEK293 cells was tested by coimmunoprecipitation. The data indicate that different combinations of ENaC subunits, as well as the α-ENaC cytoplasmic N-terminal but not C-terminal domain, coprecipitate with Usp2-45. This interaction is decreased but not abolished when the cytoplasmic ubiquitylation sites of ENaC are mutated. Importantly, coimmunoprecipitation in HEK293 cells and GST pull-down of purified recombinant proteins show that both the catalytic domain and the N-terminal tail of Usp2-45 physically interact with the HECT domain of Nedd4-2. Taken together, the data support the conclusion that Usp2-45 action on ENaC is promoted by various interactions, including through binding to Nedd4-2 that is suggested to position Usp2-45 favorably for ENaC deubiquitylation.
Resumo:
Rapport de synthese :Comparaison des effets vasculaires et tubulaires rénaux de plusieurs antagonistes des récepteurs de |'angiotensine II en combinaison avec un diurétique thiazidique chez l'humainObjectif : Le but de ce travail était d'investiguer si les antagonistes des récepteurs AT1 de l'angiotensine II (ARA2) entraînent un blocage équivalent des récepteurs au niveau vasculaire et au niveau rénal, en particulier lorsque le système rénine- angiotensine est stimulé par l'administration d'un diurétique thiazidique. Méthode : trente volontaires masculins en bonne santé ont participé à cette étude randomisée, contrôlée, en simple insu. Nous avons mesuré les variations de pression artérielle, d'hémodynamique rénale ainsi que la réponse tubulaire rénale à une perfusion d'angiotensine II 3ng/kg/min administrée sur 1 heure. Ceci avant traitement puis après sept jours d'administration, 24 heures après la dernière dose de médicament. Nous avons comparé l'irbésartan 300 mg seul ou en association avec 12.5 ou 25 mg d'hydrochlorothiazide. (irbésartan 300/12.5 ; irbésartan 300/25). Nous avons également comparé les effets de l'irbésartan 300/25 au losartan 100 mg, au valsartan 160 mg ainsi qu'à l'olmésartan 20 mg, tous administrés avec 25 mg d'hydrochlorothiazide. Chaque participant a été randomisé pour recevoir 2 traitements de 7 jours espacés d'une période d'une semaine sans traitement. Résultats: La réponse de la pression artérielle à |'angiotensine II exogène était bloquée >90% avec l'irbésartan 300 mg seul ou en association avec le diurétique. Il en était de même avec l'olmésartan 20/25. Par contre le blocage n'était que de 60% environ dans les groupes valsartan 160/25 et losartan 100/25. Au niveau rénal, |'angiotensine II exogène réduisait le flux plasmatique rénal de 36% en pré- traitement. Dans les groupes recevant l'irbésartan 300 mg et l'olmésartan 20 mg associés à l'hydrochlorothiazide 25 mg, la vasoconstriction rénale était bloquée presque entièrement alors qu'el|e ne |'était que partiellement avec le valsartan 160/25 et le losartan 100/25 (34 et 45%, respectivement). En pré-traitement, au niveau tubulaire, l'angiotensine II exogène réduisait le volume urinaire de 84% et l'excrétion urinaire de sodium de 65 %. Les effets tubulaires n'étaient que partiellement bloqués par l'administration d'ARA2. Conclusion: Ces résultats démontrent que les ARA; aux doses maximales recommandées ne bloquent pas aussi efficacement les récepteurs ATI au niveau tubulaire qu'au niveau vasculaire. Cette observation pourrait constituer une justification à l'hypothèse selon laquelle des doses plus importantes d'ARA2 seraient nécessaires afin d'obtenir une meilleure protection d'organe. De plus, nos résultats confirment qu'i| y a d'importantes différences entre les ARA2, relatives à leur capacité d'induire un blocage prolongé sur 24 heures des récepteurs AT1 au niveau vasculaire et tubulaire.
Resumo:
The potential role of angiotensin-II in mediating catecholamine and neuropeptide-Y release in a human pheochromocytoma has been investigated. Angiotensin-II type I receptors are transcribed and translated into functional proteins in a surgically removed pheochromocytoma. Primary cell culture of the tumor has been studied in a perfused system. Angiotensin-II increased the release of norepinephrine and neuropeptide-Y by the pheochromocytes. Activation of the angiotensin-II type I receptors by angiotensin-II was associated with a rise in cytosolic free calcium. The renin-angiotensin system may, therefore, contribute to the secretion of catecholamines and NPY occurring in patients with pheochromocytoma and when stimulated trigger hypertensive crisis.
Resumo:
Neuropeptide Y (NPY) is known to potentiate the pressor effect of norepinephrine. In the present work, we evaluated in unanesthetized normotensive rats the effect of NPY on blood pressure responsiveness not only to norepinephrine, but also to tyramine, a sympathomimetic agent acting indirectly to B-HT933, a selective alpha-2 adrenoceptor stimulant, to angiotensin II and vasopressin. Dose-response curves to the various pressor agents were established starting at the 45th min of an i.v. infusion with either NPY (0.025 and 0.1 microgram/min) or its vehicle. The two doses of NPY increased blood pressure by an average of approximately 6 mm Hg, which was not significantly different from the vehicle-induced blood pressure changes. NPY significantly enhanced the pressor effect of norepinephrine, tyramine and angiotensin II, but not that of B-HT933 and vasopressin. We also tested whether NPY inhibits the enzyme activity of Na, K-adenosine triphosphatase using a purified toad kidney preparation. Concentrations of NPY from 10(-14) M up to 10(-6) M had no effect on the enzyme activity. It appears therefore that the blood pressure potentiating effect of NPY is not restricted to alpha adrenoceptor stimulation with norepinephrine, but involves also the vasoconstrictor hormone angiotensin II. This NPY-induced potentiation does not seem to depend upon stimulation of alpha-2 adrenoceptors or inhibition of Na,K-adenosine triphosphatase.
Resumo:
Enzyme replacement therapy has recently been introduced to treat Fabry disease, a rare X-linked lysosomal storage disorder. The disease occurs due to deficient activity of alpha-galactosidase A, leading to progressive accumulation of globotriaosylceramide in multiple organs and tissues. Renal, cardiac and cerebrovascular manifestations of the disease result in premature death in both hemizygous males and heterozygous females. This paper outlines the clinical signs, symptoms and diagnosis of Fabry disease, and the development of the two available enzyme replacement therapies -- agalsidase alfa and agalsidase beta. Agalsidase alfa and agalsidase beta are produced in a human cell line and in Chinese hamster ovary cells, respectively, resulting in products with the same amino acid sequence as the native human enzyme, but with different patterns of glycosylation. Correct post-translational glycosylation is important in terms of the pharmacokinetics, biodistribution, clinical efficacy and tolerability of genetically engineered protein therapeutics. Differences in glycosylation, which may affect immunogenicity and mannose-6-phosphate receptor-mediated cellular internalisation of administered enzyme, possibly account for the differences in dosing, clinical effects and safety profiles reported for agalsidase alfa and agalsidase beta.
Resumo:
Background: We previously reported in schizophrenia patients a decreased level of glutathione ([GSH]), the principal non-protein antioxidant and redox regulator, both in cerebrospinal-fluid and prefrontal cortex. To identify possible genetic causation, we studied genes involved in GSH metabolism. Methods: Genotyping: mass spectrometry analysis of polymerase chain reaction (PCR) amplified DNA fragments purified from peripheral blood. Gene expression: real-time PCR of total RNA isolated from fibroblast cultures derived from skin of patients (DSM-IV) and healthy controls (DIGS). Results: Case-control association study of single nucleotide polymorphisms (SNP) from the GSH key synthesizing enzyme glutamate-cysteine-ligase (GCL) modifier subunit (GCLM) was performed in two populations: Swiss (patients/controls: 40/31) and Danish (349/348). We found a strong association of SNP rs2301022 in GCLM gene (Danish: c2=3.2; P=0.001 after correction for multiple testing). Evidence for GCLM as a risk factor was confirmed in linkage study of NIMH families. Moreover, we observed a decrease in GCLM mRNA levels in patient fibroblasts, consistently with the association study. Interestingly, Dalton and collaborators reported in GCLM knock-out mice an increased feedback inhibition of GCL activity, resulting in 60% decrease of brain [GSH], a situation analogous to patients. These mice also exhibited an increased sensitivity to oxidative stress. Similarly, under oxidative stress conditions, GCL enzymatic activity was also decreased in patient fibroblasts. Conclusions: These results at the genetic and functional levels, combined with observations that GSH deficient models reveal morphological, electrophysiological, and behavioral anomalies analogous to those observed in patients, suggest that GCLM allelic variant is a vulnerability factor for schizophrenia.
Resumo:
The renin-angiotensin aldosterone system (RAAS) is central to the pathogenesis of cardiovascular disease. RAAS inhibition can reduce blood pressure, prevent target organ damage in hypertension and diabetes, and improve outcomes in patients with heart failure and/or myocardial infarction. This review presents the history of RAAS inhibition including a summary of key heart failure, myocardial infarction, hypertension and atrial fibrillation trials. Recent developments in RAAS inhibition are discussed including implementation and optimization of current drug therapies. Finally, ongoing clinical trials, opportunities for future trials and issues related to the barriers and approvability of novel RAAS inhibitors are highlighted.
Resumo:
Metaphyseal chondromatosis with hydroxyglutaric aciduria (MC-HGA) is a generalized skeletal dysplasia, accompanied by urinary excretion of D-2- hydroxyglutarate (HGA), and variable cerebral involvement. By wholeexome sequencing 2 unrelated patients with MC-HGA, we have found mutations in isocitrate dehydrogenase 1 (IDH1) at codon 132, as apparent somatic mosaicism. IDH1 is a key enzyme of the Krebs cycle, which converts isocitrate into alpha-ketoglutarate (a-KG). Mutations at IDH1 Arg132 residue have originally been identified in different tumour types (isolated gliomas, leukemias, and chondrosarcomas). These mutations trans-specify the enzyme activity resulting in HGA accumulation and a-KG depletion. This induces activation of hypoxia-inducible factor 1-alpha (HIF-1a), an important regulator of chondrocyte proliferation at the growth plate. Differently from Arg132 somatic mutations found in isolated tumours, themutation in our patientsmust have occurred very early in embryogenesis to cause a generalized dysplasia with involvement of all long bones metaphyses and mutation detectability in blood. Identical mutations have subsequently been identified in chondromas excised from patients with multiple chondromatosis (Ollier disease). Tissue distribution of themutationmay explain variable cerebral involvement and the susceptibility to develop tumours in other organs. The postulated pathophysiology ofMC-HGA points out the link between Krebs cycle, hypoxia sensing and bone growth.
Resumo:
This study was designed to evaluate in healthy volunteers the renal hemodynamic and tubular effects of the orally active angiotensin II receptor antagonist losartan (DuP 753 or MK 954). Losartan or a placebo was administered to 23 subjects maintained on a high-sodium (200 mmol/d) or a low-sodium (50 mmol/d) diet in a randomized, double-blind, crossover study. The two 6-day diet periods were separated by a 5-day washout period. On day 6, the subjects were water loaded, and blood pressure, renal hemodynamics, and urinary electrolyte excretion were measured for 6 hours after a single 100-mg oral dose of losartan (n = 16) or placebo (n = 7). Losartan induced no significant changes in blood pressure, glomerular filtration rate, or renal blood flow in these water-loaded subjects, whatever the sodium diet. In subjects on a low-salt diet, losartan markedly increased urinary sodium excretion from 115 +/- 9 to 207 +/- 21 mumol/min (P < .05). The fractional excretion of endogenous lithium was unchanged, suggesting no effect of losartan on the early proximal tubule in our experimental conditions. Losartan also increased urine flow rate (from 10.5 +/- 0.4 to 13.1 +/- 0.6 mL/min, P < .05); urinary potassium excretion (from 117 +/- 6.9 to 155 +/- 11 mumol/min); and the excretion of chloride, magnesium, calcium, and phosphate. In subjects on a high-salt diet, similar effects of losartan were observed, but the changes induced by the angiotensin II antagonist did not reach statistical significance. In addition, losartan demonstrated significant uricosuric properties with both sodium diets.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The effects of drugs on new cancer and cancer-related death are a major concern. Recently, a meta-analysis raised the possibility that ARBs might have an adverse impact in this respect. This point of view was highly debated until the publication of two other meta-analyses which did not demonstrate any increased risk of new cancer occurrence as well as of cancer related-death with the use of ARBs in patients with hypertension, heart failure and/or nephropathy. This illustrates that the results of meta-analyses should be interpreted cautiously and critically in order to avoid biased conclusions. Overall the bulk of evidence today indicates that ARBs are not associated with an increased cancer risk.