927 resultados para ALKYL BROMIDES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Biofísica Molecular - IBILCE

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrochemical behaviour of N-R-4-cyanopyridinium (4-rcp) (R = methyl, decyl, dodecyl, or benzyl) coordinated to pentaammineruthenium(II) in CF3COOH-CF3COONa (μ = 0.1 M, pH 3) aqueous medium was studied by means of cyclic voltammetry and constant potential electrolysis. The electrochemical oxidation of the metallic centre (Ep ca 0.51 V/SCE) can be described as a reversible monoelectronic charge-transfer followed by an irreversible chemical reaction, which is the hydrolysis of N-R-4-cyanopyridiniumpentaammineruthenium(III) (A) to N-R-4-carboxamidepyridiniumruthenium (III) (B) with the kf1 values depending on the type of alkyl group. The E 1 2 values are not significantly influenced by the nature of the alkyl group. At more negative potential (ca -0.5 V/SCE), B undergoes an electrochemical reduction followed by an aquation reaction to produce aquopentaammineruthenium(II) and free N-R-4-carboxamidepyridinium. The amide was identified by comparison of its cyclic voltammogram and UV-vis spectrum with that of a sample prepared by chemical reaction. The results were also discussed by comparison with other systems, and show that nitrile-amide conversion catalysed by pentaammineruthenium(II) complexes is possible. © 1994.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PrTX-I, a non-catalytic and myotoxic Lys49-PLA(2) from Bothrops pirajai venom has been crystallized alone and in complex with bromophenacyl bromide (BPB), alpha-tocopherol and alpha-tocopherol acetate inhibitors. These crystals have shown to diffract X-rays between 2.34 and 1.65 angstrom resolution. All complexes crystals are isomorphous and belong to the space group P2(1) whereas native PrTX-I crystals belong to the P3(1)21.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure of juruenolide, a constituent of Iryanthera juruensis and I. ulei is revised to (2S, 3R, 4S)-3-hydroxy-4-methyl-2-(19′-piperonyl-1′-n-nonadecyl)-butanolide. The compound is epimeric at C-3 of the γ-lactone unit with grandinolide [(2S, 3S, 4S)-3-hydroxy-4-methyl-2- (19′-phenyl-1′-n-nonadecyl)-butanolide] from I. grandis. An extract of I. juruensis contained additionally juruenolide-B [(4S)-4-methyl-2-(19′-piperonyl-1′-n-nonadec-7′-enyl)-but-2-enolide]. Analogous products with heptadecyl and pentadecyl side chains co-occur with the respective nonadecyl derivatives. © 1983.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2-Cys peroxiredoxin (Prx) enzymes are ubiquitously distributed peroxidases that make use of a peroxidatic cysteine (Cys(P)) to decompose hydroperoxides. A disulfide bond is generated as a consequence of the partial unfolding of the alpha-helix that contains Cys(P). Therefore, during its catalytic cycle, 2-Cys Prx alternates between two states, locally unfolded and fully folded. Tsa1 (thiol-specific antioxidant protein 1 from yeast) is by far the most abundant Cys-based peroxidase in Saccharomyces cerevisiae. In this work, we present the crystallographic structure at 2.8 angstrom resolution of Tsa1(C47S) in the decameric form [(alpha(2))(5)] with a DTT molecule bound to the active site, representing one of the few available reports of a 2-Cys Prx (AhpC-Prx1 subfamily) (AhpC, alkyl hydroperoxide reductase subunit C) structure that incorporates a ligand. The analysis of the Tsa1(C47S) structure indicated that G1u50 and Arg146 participate in the stabilization of the Cys(P) alpha-helix. As a consequence, we raised the hypothesis that G1u50 and Arg146 might be relevant to the Cys(P) reactivity. Therefore, Tsa1(E50A) and Tsa1(R146Q) mutants were generated and were still able to decompose hydrogen peroxide, presenting a second-order rate constant in the range of 10(6) M-1 S-1. Remarkably, although Tsa1(E50A) and Tsa1(R146Q) were efficiently reduced by the low-molecular-weight reductant DTT, these mutants displayed only marginal thioredoxin (Trx)-dependent peroxidase activity, indicating that G1u50 and Arg146 are important for the Tsa1-Trx interaction. These results may impact the comprehension of downstream events of signaling pathways that are triggered by the oxidation of critical Cys residues, such as Trx. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crown ethers have the ability of solubilizing inorganic salts in apolar solvents and to promote chemical reactions by phase-transfer catalysis. However, details on how crown ethers catalyze ionic S(N)2 reactions and control selectivity are not well understood. In this work, we have used high level theoretical calculations to shed light on the details of phase-transfer catalysis mechanism of KF reaction with alkyl halides promoted by 18-crown-6. A complete analysis of the of the model reaction between KF(18-crown-6) and ethyl bromide reveals that the calculations can accurately predict the product ratio and the overall kinetics. Our results point out the importance of the K* ion and of the crown ether ring in determining product selectivity. While the K* ion favors the S(N)2 over the E2 anti pathway, the crown ether ring favors the S(N)2 over E2 syn route. The combination effects lead to a predicted 94% for the S(N)2 pathway in excellent agreement with the experimental value of 92%. A detailed analysis of the overall mechanism of the reaction under phase-transfer conditions also reveals that the KBr product generated in the nucleophilic fluorination acts as an inhibitor of the 18-crown-6 catalyst and it is responsible for the observed slow reaction rate. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation and properties of carbonate adducts of some organic hydroxy compounds in aqueous medium were investigated. Fatty alcohols and sugars were chosen as representative classes of biological interest, and the medium was carbonated aqueous solution with pH ranging from 3.0 to 8.3. Capillary electrophoresis with two capacitively coupled contactless conductivity detectors (C4Ds) was used for quantitation and to obtain the mobility of the monoalkyl carbonates (MACs), which were used to determine the equilibrium and kinetic constants of the reaction as well as the diffusion coefficients. For increasing chain length of the alcohols, the equilibrium constant tends to the unit, which suggests that fatty alcohols can form the corresponding MACs. The formation of MACs for cyclohexanol and cyclopentanol also suggest the existence of similar species for sterols. Carbonate adducts of fructose, glucose, and sucrose were also detected, which suggests that these counterparts of the well-known phosphates can also occur in the cytosol. Our calculations suggest that one in 1000 to one in 10 000 molecules of these hydroxy compounds would be available as the corresponding MAC in such a medium. Experiments carried out at pH values less than 3.0 showed that there is a catalytic effect of hydronium on the interconversion of bicarbonate and a MAC. Taking into account the great number of hydroxy compounds similar to the ones investigated and that bicarbonate is ubiquitous in living cells, one can anticipate the existence of a whole new class of carbonate adducts of these metabolites.