932 resultados para A(1)- AND A(2)-ADRENOCEPTORS
Resumo:
The MOOGLI dataset contains mesozooplankton data collected in 1998-1999 in the Gulf of Lion (North Western Mediterranean Sea). Zooplankton taxonomy-related abundance per unit volume of the water column.
Resumo:
Here, we present results from sediments collected in the Argentine Basin, a non-steady state depositional marine system characterized by abundant oxidized iron within methane-rich layers due to sediment reworking followed by rapid deposition. Our comprehensive inorganic data set shows that iron reduction in these sulfate and sulfide-depleted sediments is best explained by a microbially mediated process-implicating anaerobic oxidation of methane coupled to iron reduction (Fe-AOM) as the most likely major mechanism. Although important in many modern marine environments, iron-driven AOM may not consume similar amounts of methane compared with sulfate-dependent AOM. Nevertheless, it may have broad impact on the deep biosphere and dominate both iron and methane cycling in sulfate-lean marine settings. Fe-AOM might have been particularly relevant in the Archean ocean, >2.5 billion years ago, known for its production and accumulation of iron oxides (in iron formations) in a biosphere likely replete with methane but low in sulfate. Methane at that time was a critical greenhouse gas capable of sustaining a habitable climate under relatively low solar luminosity, and relationships to iron cycling may have impacted if not dominated methane loss from the biosphere.
Resumo:
The response of the tropical climate in the Indian Ocean realm to abrupt climate change events in the North Atlantic Ocean is contentious. Repositioning of the intertropical convergence zone is thought to have been responsible for changes in tropical hydroclimate during North Atlantic cold spells1, 2, 3, 4, 5, but the dearth of high-resolution records outside the monsoon realm in the Indian Ocean precludes a full understanding of this remote relationship and its underlying mechanisms. Here we show that slowdowns of the Atlantic meridional overturning circulation during Heinrich stadials and the Younger Dryas stadial affected the tropical Indian Ocean hydroclimate through changes to the Hadley circulation including a southward shift in the rising branch (the intertropical convergence zone) and an overall weakening over the southern Indian Ocean. Our results are based on new, high-resolution sea surface temperature and seawater oxygen isotope records of well-dated sedimentary archives from the tropical eastern Indian Ocean for the past 45,000 years, combined with climate model simulations of Atlantic circulation slowdown under Marine Isotope Stages 2 and 3 boundary conditions. Similar conditions in the east and west of the basin rule out a zonal dipole structure as the dominant forcing of the tropical Indian Ocean hydroclimate of millennial-scale events. Results from our simulations and proxy data suggest dry conditions in the northern Indian Ocean realm and wet and warm conditions in the southern realm during North Atlantic cold spells.
Resumo:
The Pacific Decadal Oscillation (PDO), the leading mode of sea surface temperature (SST) anomalies in the extratropical North Pacific Ocean, has widespread impacts on precipitation in the Americas and marine fisheries in the North Pacific. However, marine proxy records with a temporal resolution that resolves interannual to interdecadal SST variability in the extratropical North Pacific are extremely rare. Here we demonstrate that the winter Sr/Ca and U/Ca records of an annually-banded reef coral from the Ogasawara Islands in the western subtropical North Pacific are significantly correlated with the instrumental winter PDO index over the last century. The reconstruction of the PDO is further improved by combining the coral data with an existing eastern mid-latitude North Pacific growth ring record of geoduck clams. The spatial correlations of this combined index with global climate fields suggest that SST proxy records from these locations provide potential for PDO reconstructions further back in time.