999 resultados para 978
Resumo:
Energy resources management can play a very relevant role in future power systems in a SmartGrid context, with intensive penetration of distributed generation and storage systems. This paper deals with the importance of resource management in incident situations. The paper presents DemSi, an energy resources management simulator that has been developed by the authors to simulate electrical distribution networks with high distributed generation penetration, storage in network points and customers with demand response contracts. DemSi is used to undertake simulations for an incident scenario, evidencing the advantages of adequately using flexible contracts, storage, and reserve in order to limit incident consequences.
Resumo:
In the energy management of a small power system, the scheduling of the generation units is a crucial problem for which adequate methodologies can maximize the performance of the energy supply. This paper proposes an innovative methodology for distributed energy resources management. The optimal operation of distributed generation, demand response and storage resources is formulated as a mixed-integer linear programming model (MILP) and solved by a deterministic optimization technique CPLEX-based implemented in General Algebraic Modeling Systems (GAMS). The paper deals with a vision for the grids of the future, focusing on conceptual and operational aspects of electrical grids characterized by an intensive penetration of DG, in the scope of competitive environments and using artificial intelligence methodologies to attain the envisaged goals. These concepts are implemented in a computational framework which includes both grid and market simulation.
Resumo:
Demand response can play a very relevant role in future power systems in which distributed generation can help to assure service continuity in some fault situations. This paper deals with the demand response concept and discusses its use in the context of competitive electricity markets and intensive use of distributed generation. The paper presents DemSi, a demand response simulator that allows studying demand response actions and schemes using a realistic network simulation based on PSCAD. Demand response opportunities are used in an optimized way considering flexible contracts between consumers and suppliers. A case study evidences the advantages of using flexible contracts and optimizing the available generation when there is a lack of supply.
Resumo:
In the context of electricity markets, transmission pricing is an important tool to achieve an efficient operation of the electricity system. The electricity market is influenced by several factors; however the transmission network management is one of the most important aspects, because the network is a natural monopoly. The transmission tariffs can help to regulate the market, for this reason transmission tariffs must follow strict criteria. This paper presents the following methods to tariff the use of transmission networks by electricity market players: Post-Stamp Method; MW-Mile Method Distribution Factors Methods; Tracing Methodology; Bialek’s Tracing Method and Locational Marginal Price. A nine bus transmission network is used to illustrate the application of the tariff methods.
Resumo:
In health care there has been a growing interest and investment in new tools to have a constant monitoring of patients. The increasing of average life ex-pectation and, consequently, the costs in health care due to elderly population are the motivation for this investment. However, healthmonitoring is not only important to elderly people, it can be also applied to people with cognitive disabilities. In this article we present some systems, which try to support these persons on doing their day-to-day activities and how it can improve their life quality. Also, we present an idea to a project that tries to help the persons with cognitive disabilities by providing assistance in geo-guidance and keep their caregivers aware of their location.
Resumo:
This paper proposes two meta-heuristics (Genetic Algorithm and Evolutionary Particle Swarm Optimization) for solving a 15 bid-based case of Ancillary Services Dispatch in an Electricity Market. A Linear Programming approach is also included for comparison purposes. A test case based on the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is used to demonstrate that the use of meta-heuristics is suitable for solving this kind of optimization problem. Faster execution times and lower computational resources requirements are the most relevant advantages of the used meta-heuristics when compared with the Linear Programming approach.
Resumo:
Control Centre operators are essential to assure a good performance of Power Systems. Operators’ actions are critical in dealing with incidents, especially severe faults, like blackouts. In this paper we present an Intelligent Tutoring approach for training Portuguese Control Centre operators in incident analysis and diagnosis, and service restoration of Power Systems, offering context awareness and an easy integration in the working environment.
Resumo:
An auction model is used to increase the individual profits for market players with products they do not use. A Financial Transmission Rights Auction has the goal of trade transmission rights between Bidders and helps them raise their own profits. The ISO plays a major rule on keep the system in technical limits without interfere on the auctions offers. In some auction models the ISO decide want bids are implemented on the network, always with the objective maximize the individual profits for all bidders in the auction. This paper proposes a methodology for a Financial Transmission Rights Auction and an informatics application. The application receives offers from the purchase and sale side and considers bilateral contracts as Base Case. This goal is maximize the individual profits within the system in their technical limits. The paper includes a case study for the 30 bus IEEE test case.
Resumo:
Adequate decision support tools are required by electricity market players operating in a liberalized environment, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services (AS) represent a good negotiation opportunity that must be considered by market players. Based on the ancillary services forecasting, market participants can use strategic bidding for day-ahead ancillary services markets. For this reason, ancillary services market simulation is being included in MASCEM, a multi-agent based electricity market simulator that can be used by market players to test and enhance their bidding strategies. The paper presents the methodology used to undertake ancillary services forecasting, based on an Artificial Neural Network (ANN) approach. ANNs are used to day-ahead prediction of non-spinning reserve (NS), regulation-up (RU), and regulation down (RD). Spinning reserve (SR) is mentioned as past work for comparative analysis. A case study based on California ISO (CAISO) data is included; the forecasted results are presented and compared with CAISO published forecast.
Resumo:
Electricity market players operating in a liberalized environment requires access to an adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tool must include ancillary market simulation. This paper proposes two different methods (Linear Programming and Genetic Algorithm approaches) for ancillary services dispatch. The methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case based on California Independent System Operator (CAISO) data concerning the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is included in this paper.
Resumo:
Electricity market players operating in a liberalized environment requires access to an adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tools must include ancillary market simulation. This paper proposes two different methods (Linear Programming and Genetic Algorithm approaches) for ancillary services dispatch. The methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case concerning the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is included in this paper.
Resumo:
This paper presents an integrated system that helps both retail companies and electricity consumers on the definition of the best retail contracts and tariffs. This integrated system is composed by a Decision Support System (DSS) based on a Consumer Characterization Framework (CCF). The CCF is based on data mining techniques, applied to obtain useful knowledge about electricity consumers from large amounts of consumption data. This knowledge is acquired following an innovative and systematic approach able to identify different consumers’ classes, represented by a load profile, and its characterization using decision trees. The framework generates inputs to use in the knowledge base and in the database of the DSS. The rule sets derived from the decision trees are integrated in the knowledge base of the DSS. The load profiles together with the information about contracts and electricity prices form the database of the DSS. This DSS is able to perform the classification of different consumers, present its load profile and test different electricity tariffs and contracts. The final outputs of the DSS are a comparative economic analysis between different contracts and advice about the most economic contract to each consumer class. The presentation of the DSS is completed with an application example using a real data base of consumers from the Portuguese distribution company.
Resumo:
The Information and Communication Technology (ICT) provide new strategies for disseminating information and new communication models in order to change attitudes and human behaviour concerning to education. Nowadays the internet is crucial as a means of communication and information sharing. To education or tutorship will be required to use ICT, supported on the internet, to establish the communication of teacher-student and student-student, disseminating the content of the subjects, and as a way of teaching and learning process. This paper presents an intelligent tutor that aims to be a tool to support teaching and learning in the field of the electrical engineering project.
Resumo:
Introdução: Para além da importância já reconhecida da dispensa de medicação em dose unitária, a utilização de sistemas semiautomáticos no auxílio aos Serviços Farmacêuticos, quer do Kardex®, que será alvo de análise ao longo do trabalho, quer o Fast Dispensing System (FDS®), permite maior rapidez e segurança na preparação da Distribuição Individual Diária (DID) e Distribuição Individual Diária em Dose Unitária (DIDDU), auxiliando no envio do medicamento correto, na quantidade e qualidades certas, para cumprimento da prescrição médica proposta. O Kardex tem - se mostrado cada vez mais uma ferramenta de trabalho indispensável no dia – a - dia de um hospital com as características do Centro Hospitalar de São João, EPE pelo que se torna importante uma análise aos valores de utilização do Kardex. Assim sendo, este trabalho pretende dar a conhecer através de apresentações gráficas a realidade de utilização do Kardex® por Serviço Clínico, na preparação de medicação por dose unitária. Material e Métodos: Efetuou - se um estudo transversal, de carácter observacional, descritivo simples, tendo sido analisados a totalidade dos Serviços Clínicos reparados em Kardex®, entre 2 de Janeiro e 1 de Fevereiro, num total de 31 dias. Para tal efectuou - se a recolha de dados fornecida pelo Kardex®, sendo estes inseridos numa folha de Microsoft Office Excel®, e tratados posteriormente até obtenção de gráficos. Resultados: Os resultados obtidos mostram que sexta-feira e sábado são os dias em que o Kardex® tem mais tempo de utilização, mantendo-se os restantes dias da semana com valores de utilização bastante próximos. Quando analisados por Serviços Clínicos os dados mostram que são os Internamentos de Medicina A e B que ocupam respetivamente o primeiro e segundo lugar no que diz respeito ao maior tempo de utilização do Kardex®, com um tempo de trabalho em Kardex de aproximadamente 1 hora. Discussão / Conclusões: Sexta-feira e Sábado são os dias em que a utilização do Kardex® se torna maior devido à necessidade de preparação de medicação para 48h, ao contrário dos restantes dias em que a preparação da medicação é para apenas 24h. Os Internamentos de Medicina A e B são os Serviços Clínicos que mais tempo ocupam o Kardex®, muito devido ao grande número de camas que cada serviço tem, mas também às características dos doentes nele internados, a sua maioria bastante polimedicados.