989 resultados para 7137-117
Resumo:
Load bearing Light Gauge Steel Frame (LSF) walls are commonly made of conventional lipped channel sections and gypsum plasterboards. Recently, innovative steel sections such as hollow flange channel sections have been proposed as studs in LSF wall frames with a view to improve their fire resistance ratings. A series of full scale fire tests was then undertaken to investigate the fire performance of the new LSF wall systems under standard fire conditions. Test wall frames made of hollow flange section studs were lined with fire resistant gypsum plasterboards on both sides, and were subjected to increasing temperatures as given by the standard fire curve on one side. Both uninsulated and cavity insulated walls were tested with varying load ratios from 0.2 to 0.6. This paper presents the details of this experimental study on the fire performance of LSF walls and the results. Test results showed that the walls made of the new hollow flange channel section studs have a superior fire performance in comparison to that of lipped channel section stud walls. They also showed that the fire performance of cavity insulated walls was inferior to that of uninsulated walls. The reasons for this fire behaviour are described in this paper.
Resumo:
NSW Supreme Court decision - claim resulting from alleged damaging dental treatment of healthy teeth - failure of plaintiff to prove dishonest and fraudulent behaviour - assessment of damages.
Resumo:
ZnO is a promising photoanode material for dye-sensitized solar cells (DSCs) due to its high bulk electron mobility and because different geometrical structures can easily be tailored. Although various strategies have been taken to improve ZnO-based DSC efficiencies, their performances are still far lower than TiO2 counterparts, mainly because low conductivity Zn2+–dye complexes form on the ZnO surfaces. Here, cone-shaped ZnO nanocrystals with exposed reactive O-terminated {101̅1} facets were synthesized and applied in DSC devices. The devices were compared with DSCs made from more commonly used rod-shaped ZnO nanocrystals where {101̅0} facets are predominantly exposed. When cone-shaped ZnO nanocrystals were used, DSCs sensitized with C218, N719, and D205 dyes universally displayed better power conversion efficiency, with the highest photoconversion efficiency of 4.36% observed with the C218 dye. First-principles calculations indicated that the enhanced DSCs performance with ZnO nanocone photoanodes could be attributed to the strength of binding between the dye molecules and reactive O-terminated {101̅1} ZnO facets and that more effective use of dye molecules occurred due to a significantly less dye aggregation on these ZnO surfaces compared to other ZnO facets.
Resumo:
Bone, tendon, and cartilage are highly specialized musculoskeletal connective tissues that are subject to injury and degeneration. These tissues have relatively poor healing capabilities, and coupled with their variable response to established medical treatments, produce significant morbidity. Mesenchymal stem cells (MSCs) are capable of regenerating skeletal tissues and therefore offer great promise in the treatment of connective tissue pathologies. Adult MSCs are multipotent cells that possess the properties of proliferation and differentiation into all connective tissues. Furthermore, they can be gene modified to secrete growth factors and utilized in connective tissue engineering. Potential MSC-based therapies for bone and tendon conditions are reviewed in this chapter.
Resumo:
The ultraviolet photodissociation of gas-phase N-methylpyridinium ions is studied at room temperature using laser photodissociation mass spectrometry and structurally diagnostic ion-molecule reaction kinetics. The C5H5N-CH3+ (m/z 94), C5H5N-CD3+ (m/z 97), and C5D5N-CH3+(m/z 99) isotopologues are investigated, and it is shown that the N-methylpyridinium ion photodissociates by the loss of methane in the 36 000 - 43 000 cm(-1) (280 - 230 nm) region. The dissociation likely occurs on the ground state surface following internal conversion from the SI state. For each isotopologue, by monitoring the photofragmentation yield as a function of photon wavenumber, a broad vibronically featured band is recorded with origin (0-0) transitions assigned at 38 130, 38 140 and 38 320 cm(-1) for C5H5N-CH3+ C5H5N-CD3+ and C5D5N-CH3+, respectively. With the aid of quantum chemical calculations (CASSCF(6,6)/aug-cc-pVDZ), most of the observed vibronic detail is assigned to two in-plane ring deformation modes. Finally, using ion-molecule reactions, the methane coproduct at m/z 78 is confirmed as a 2-pyridinylium ion.
Resumo:
Structural investigations of large biomolecules in the gas phase are challenging. Herein, it is reported that action spectroscopy taking advantage of facile carbon-iodine bond dissociation can be used to examine the structures of large molecules, including whole proteins. Iodotyrosine serves as the active chromophore, which yields distinctive spectra depending on the solvation of the side chain by the remainder of the molecule. Isolation of the chromophore yields a double featured peak at ∼290 nm, which becomes a single peak with increasing solvation. Deprotonation of the side chain also leads to reduced apparent intensity and broadening of the action spectrum. The method can be successfully applied to both negatively and positively charged ions in various charge states, although electron detachment becomes a competitive channel for multiply charged anions. In all other cases, loss of iodine is by far the dominant channel which leads to high sensitivity and simple data analysis. The action spectra for iodotyrosine, the iodinated peptides KGYDAKA, DAYLDAG, and the small protein ubiquitin are reported in various charge states. © 2012 American Chemical Society.
Resumo:
Objectives: To establish injury rates among a population of elite athletes, to provide normative data for psychological variables hypothesised to be predictive of sport injuries, and to establish relations between measures of mood, perceived life stress, and injury characteristics as a precursor to introducing a psychological intervention to ameliorate the injury problem. Methods: As part of annual screening procedures, athletes at the Queensland Academy of Sport report medical and psychological status. Data from 845 screenings (433 female and 412 male athletes) were reviewed. Population specific tables of normative data were established for the Brunel mood scale and the perceived stress scale. Results: About 67% of athletes were injured each year, and about 18% were injured at the time of screening. Fifty percent of variance in stress scores could be predicted from mood scores, especially for vigour, depression, and tension. Mood and stress scores collectively had significant utility in predicting injury characteristics. Injury status (current, healed, no injury) was correctly classified with 39% accuracy, and back pain with 48% accuracy. Among a subset of 233 uninjured athletes (116 female and 117 male), five mood dimensions (anger, confusion, fatigue, tension, depression) were significantly related to orthopaedic incidents over the preceding 12 months, with each mood dimension explaining 6–7% of the variance. No sex differences in these relations were found. Conclusions: The findings support suggestions that psychological measures have utility in predicting athletic injury, although the relatively modest explained variance highlights the need to also include underlying physiological indicators of allostatic load, such as stress hormones, in predictive models.
Resumo:
Children are vulnerable to temperature extremes. This paper aimed to review the literature regarding the relationship between ambient temperature and children’s health and to propose future research directions. A literature search was conducted in February 2012 using the databases including PubMed, ProQuest, ScienceDirect, Scopus and Web of Science. Empirical studies regarding the impact of ambient temperature on children’s mortality and morbidity were included. The existing literature indicates that very young children, especially children under one year of age, are particularly vulnerable to heat-related deaths. Hot and cold temperatures mainly affect cases of infectious diseases among children, including gastrointestinal diseases, malaria, hand, foot and mouse disease, and respiratory diseases. Paediatric allergic diseases, like eczema, are also sensitive to temperature extremes. During heat waves, the incidences of renal disease, fever and electrolyte imbalance among children increase significantly. Future research is needed to examine the balance between hot- and cold-temperature related mortality and morbidity among children; evaluate the impacts of cold spells on cause-specific mortality in children; identify the most sensitive temperature exposure and health outcomes to quantify the impact of temperature extremes on children; elucidate the possible modifiers of the temperature and children’s health relationship; and project children’s disease burden under different climate change scenarios.
Resumo:
The writing of award winning tartan noir author, Denise Mina, “crime queen of Glasgow” has been identified with “explicitly feminist politics,” and Mina herself claims, as a feminist, she wants to use crime fiction to present a “narrative about very disempowered people becoming empowered.” This paper explores how Mina’s avowed stance on feminism plays out in her novel, The Field of Blood (2005), and examines whether her concerns are reflected in the embodied actions of her young protagonist, would-be investigative journalist, Paddy Meehan. It asks whether Mina has succeeded in working against entrenched patriarchal codes of crime fiction’s dominant narrative construction or whether her feminist intentions have been undermined by traditional stereotypical conventions of the genre.
Resumo:
The mitochondrial (mt) genome is, to date, the most extensively studied genomic system in insects, outnumbering nuclear genomes tenfold and representing all orders versus very few. Phylogenomic analysis methods have been tested extensively, identifying compositional bias and rate variation, both within and between lineages, as the principal issues confronting accurate analyses. Major studies at both inter- and intraordinal levels have contributed to our understanding of phylogenetic relationships within many groups. Genome rearrangements are an additional data type for defining relationships, with rearrangement synapomorphies identified across multiple orders and at many different taxonomic levels. Hymenoptera and Psocodea have greatly elevated rates of rearrangement offering both opportunities and pitfalls for identifying rearrangement synapomorphies in each group. Finally, insects are model systems for studying aberrant mt genomes, including truncated tRNAs and multichromosomal genomes. Greater integration of nuclear and mt genomic studies is necessary to further our understanding of insect genomic evolution.
Resumo:
Espionage, surveillance and clandestine operations by secret agencies and governments were something of an East–West obsession in the second half of the twentieth century, a fact reflected in literature and film. In the twenty-first century, concerns of the Cold War and the threat of Communism have been rearticulated in the wake of 9/11. Under the rubric of ‘terror’ attacks, the discourses of security and surveillance are now framed within an increasingly global context. As this article illustrates, surveillance fiction written for young people engages with the cultural and political tropes that reflect a new social order that is different from the Cold War era, with its emphasis on spies, counter espionage, brainwashing and psychological warfare. While these tropes are still evident in much recent literature, advances in technology have transformed the means of tracking, profiling and accumulating data on individuals’ daily activities. Little Brother, The Hunger Games and Article 5 reflect the complex relationship between the real and the imaginary in the world of surveillance and, as this paper discusses, raise moral and ethical issues that are important questions for young people in our age of security.
Resumo:
Purpose The paper examines the impact of internal auditors’ involvement in Enterprise Risk Management (ERM) on perceptions of their willingness to report a breakdown in risk procedures and whether a strong relationship with the audit committee affects such willingness to report. The study also investigates the use of ERM and the role of internal audit in ERM in Australian private and public sector entities. Design/methodology/approach The study uses an experimental design, manipulating (i) the internal auditor’s involvement in ERM and (ii) the strength of the relationship between internal audit and the audit committee. Participants are 117 certified internal auditors. The study also gathers descriptive data on the use of ERM. Findings The study indicates that a high involvement in ERM impacts the perceptions of internal auditors’ willingness to report a breakdown in risk procedures to the audit committee. However, a strong relationship with the audit committee does not appear to affect their perceived willingness to report. The study also finds that the majority of organisations have recently adopted ERM. Internal auditors are involved in ERM assurance activities but some also engage in activities that could compromise objectivity.
Resumo:
Trigonopsis variabilis D-amino acid oxidase (TvDAO) is a well characterized enzyme used for cephalosporin C conversion on industrial scale. However, the demands on the enzyme with respect to activity, operational stability and costs also vary with the field of application. Processes that use the soluble enzyme suffer from fast inactivation of TvDAO while immobilized oxidase preparations raise issues related to expensive carriers and catalyst efficiency. Therefore, oxidase preparations that are more robust and active than those currently available would enable a much broader range of economically viable applications of this enzyme in fine chemical syntheses. A multi-step engineering approach was chosen here to develop a robust and highly active Pichia pastoris TvDAO whole-cell biocatalyst. As compared to the native T. variabilis host, a more than seven-fold enhancement of the intracellular level of oxidase activity was achieved in P. pastoris through expression optimization by codon redesign as well as efficient subcellular targeting of the enzyme to peroxisomes. Multi copy integration further doubled expression and the specific activity of the whole cell catalyst. From a multicopy production strain, about 1.3 x 103 U/g wet cell weight (wcw) were derived by standard induction conditions feeding pure methanol. A fed-batch cultivation protocol using a mixture of methanol and glycerol in the induction phase attenuated the apparent toxicity of the recombinant oxidase to yield final biomass concentrations in the bioreactor of >or= 200 g/L compared to only 117 g/L using the standard methanol feed. Permeabilization of P. pastoris using 10% isopropanol yielded a whole-cell enzyme preparation that showed 49% of the total available intracellular oxidase activity and was notably stabilized (by three times compared to a widely used TvDAO expressing Escherichia coli strain) under conditions of D-methionine conversion using vigorous aeration. Stepwise optimization using a multi-level engineering approach has delivered a new P. pastoris whole cell TvDAO biocatalyst showing substantially enhanced specific activity and stability under operational conditions as compared to previously reported preparations of the enzyme. The production of the oxidase through fed-batch bioreactor culture and subsequent cell permeabilization is high-yielding and efficient. Therefore this P. pastoris catalyst has been evaluated for industrial purposes.
Resumo:
Background: International epidemic clones (ribotypes 027 and 078) of Clostridium difficile have been associated with death, toxic megacolon and other adverse outcomes in North America and Europe. In 2010, the first local transmission of an epidemic strain (027) of C. difficile was reported in the state of Victoria, Australia, but no cases of infection with this strain were reported in the state of Queensland. In 2012, a prevalence study was undertaken in all public and selected private hospitals to examine the epidemiology of CDI and determine the prevalence of epidemic C. difficile strains in Queensland. Methods: Enhanced surveillance was undertaken on all hospital identified CDI cases aged over 2 years between 10 April and 15 June 2012. Where available, patient samples were cultured and isolates of C. difficile ribotyped. The toxin profile of each isolate was determined by PCR. Results: In total, 168 cases of CDI were identified during the study period. A majority (58.3%) of cases had onset of symptoms in hospital. Of the 62 patients with community onset of symptoms, most (74%) had a hospital admission in the previous 3 months. Only 4 of 168 patients had onset of symptoms within a residential care facility. Thirteen out of the 168 (7.7%) patients included in the study had severe disease (ICU admission and/or death within 30 days of onset). Overall 136/168 (81%) of cases had been prescribed antibiotics in the last month. Of concern was the emergence of a novel ribotype (244) which has recently been described in other parts of Australia and is genetically related to ribotype 027. Seven patients were infected with C. difficile ribotype 244 (8% of 83 samples ribotyped), including one patient requiring ICU admission and one patient who died. Ribotype 244 was tcdA, tcdB and CDT positive and contained a tcdC mutation at position 117. Conclusion: Ongoing surveillance is required to determine the origin and epidemiology of C. difficile ribotype 244 infections in Australia.
Resumo:
Finite element method (FEM) relies on an approximate function to fit into a governing equation and minimizes the residual error in the integral sense in order to generate solutions for the boundary value problems (nodal solutions). Because of this FEM does not show simultaneous capacities for accurate displacement and force solutions at node and along an element, especially when under the element loads, which is of much ubiquity. If the displacement and force solutions are strictly confined to an element’s or member’s ends (nodal response), the structural safety along an element (member) is inevitably ignored, which can definitely hinder the design of a structure for both serviceability and ultimate limit states. Although the continuous element deflection and force solutions can be transformed into the discrete nodal solutions by mesh refinement of an element (member), this setback can also hinder the effective and efficient structural assessment as well as the whole-domain accuracy for structural safety of a structure. To this end, this paper presents an effective, robust, applicable and innovative approach to generate accurate nodal and element solutions in both fields of displacement and force, in which the salient and unique features embodies its versatility in applications for the structures to account for the accurate linear and second-order elastic displacement and force solutions along an element continuously as well as at its nodes. The significance of this paper is on shifting the nodal responses (robust global system analysis) into both nodal and element responses (sophisticated element formulation).