885 resultados para 690 Buildings
Resumo:
The issue of whether improved building services such as air quality, provision of daylight, thermal comfort etc, have a positive impact on the health and productivity of building occupants is still an open question. There is significant anecdotal evidence supporting the notion that health and productivity of building occupants can be improved by improving the quality of the indoor environment, but there are actually few published quantitative studies to substantiate this contention. This paper reports on a comprehensive review of the worldwide literature which relates health of building occupants with the different aspects of the indoor environment which are believed to impact of these issues, with a particular focus on studies in Australia, The paper analyses the existing research and identifies the key deficiencies in our existing understanding of this problem. The key focus of this research is office and school buildings, but the scope of the literature surveyed includes all commercial buildings, including industrial buildings. There is a notable absence of detailed studies on this link in Australian buildings, although there are studies on thermal comfort, and a number of studies on indoor air quality in Australia, which do not make the connection to health and productivity. Many international studies have focused on improved lighting, and in particular the provision of daylight in buildings, but again there are few studies in Australia which focus in this area.
Resumo:
Characterization of indoor particle sources from 14 residential houses in Brisbane, Australia, was performed. The approximation of PM2.5 and the submicrometre particle number concentrations were measured simultaneously for more than 48 h in the kitchen of all the houses by using a photometer (DustTrak) and a condensation particle counter (CPC), respectively. From the real time indoor particle concentration data and a diary of indoor activities, the indoor particle sources were identified. The study found that among the indoor activities recorded in this study, frying, grilling, stove use, toasting, cooking pizza, smoking, candle vaporizing eucalyptus oil and fan heater use, could elevate the indoor particle number concentration levels by more than five times. The indoor approximation of PM2.5 concentrations could be close to 90 times, 30 times and three times higher than the background levels during grilling, frying and smoking, respectively.
Resumo:
The relationship between indoor and outdoor concentration levels of particles in the absence and in the presence of indoor sources has been attracting an increasing level of attention. Understanding of the relationship and the mechanisms driving it, as well as the ability to quantify it, are of importance for assessment of source contribution, assessment of human exposure and for control and management of particles. It became particularly important to address this topic when evidence came from epidemiological studies on the close association between outdoor concentration levels of particles and health effects, yet with many studies showing that indoor concentrations could be significantly higher than those outdoors. This paper presents a summary of an extensive literature review on this topic conducted with an aim to identify general trends in relation to the I/O relationship emerging from studies conducted worldwide. The review considered separately a larger body of papers published on PM10, PM2.5, as well as the smaller database on particle number and number or volume size distribution. A specific focus of this paper is on naturally ventilated houses. The conclusion from the review is that despite the multiplicity of factors that play role in affecting the relationship, there are clear trends emerging in relation to the I/O relationship for particle mass concentration, enabling more general predictions to be made about the relationship. However, more research is still needed on particle number concentration and size distribution.
Resumo:
The following paper considers the question, where to office property? In doing so, it focuses, in the first instance, on identifying and describing a selection of key forces for change present within the contemporary operating environment in which office property functions. Given the increasingly complex, dynamic and multi-faceted character of this environment, the paper seeks to identify only the primary forces for change, within the context of the future of office property. These core drivers of change have, for the purposes of this discussion, been characterised as including a range of economic, demographic and socio-cultural factors, together with developments in information and communication technology. Having established this foundation, the paper proceeds to consider the manner in which these forces may, in the future, be manifested within the office property market. Comment is offered regarding the potential future implications of these forces for change together with their likely influence on the nature and management of the physical asset itself. Whilst no explicit time horizon has been envisioned in the preparation of this paper particular attention has been accorded short to medium term trends, that is, those likely to emerge in the office property marketplace over the coming two decades. Further, the paper considers the question posed, in respect of the future of office property, in the context of developed western nations. The degree of commonality seen in these mature markets is such that generalisations may more appropriately and robustly be applied. Whilst some of the comments offered with respect to the target market may find application in other arenas, it is beyond the scope of this paper to explicitly consider highly heterogeneous markets. Given also the wide scope of this paper key drivers for change and their likely implications for the commercial office property market are identified at a global level (within the above established parameters). Accordingly, the focus is necessarily such that it serves to reflect overarching directions at a universal level (with the effect being that direct applicability to individual markets - when viewed in isolation on a geographic or property type specific basis – may not be fitting in all instances)
Resumo:
Many factors affect the airflow patterns, thermal comfort, contaminant removal efficiency and indoor air quality at individual workstations in office buildings. In this study, four ventilation systems were used in a test chamber designed to represent an area of a typical office building floor and reproduce the real characteristics of a modern office space. Measurements of particle concentration and thermal parameters (temperature and velocity) were carried out for each of the following types of ventilation systems: a) conventional air distribution system with ceiling supply and return; b) conventional air distribution system with ceiling supply and return near the floor; c) underfloor air distribution system; and d) split system. The measurements aimed to analyse the particle removal efficiency in the breathing zone and the impact of particle concentration on an individual at the workstation. The efficiency of the ventilation system was analysed by measuring particle size and concentration, ventilation effectiveness and the Indoor/Outdoor ratio. Each ventilation system showed different airflow patterns and the efficiency of each ventilation system in the removal of the particles in the breathing zone showed no correlation with particle size and the various methods of analyses used.
Resumo:
Bomb attacks carried out by terrorists, targeting high occupancy buildings, have become increasingly common in recent times. Large numbers of casualties and property damage result from overpressure of the blast followed by failing of structural elements. Understanding the blast response of multi-storey buildings and evaluating their remaining life have therefore become important. Response and damage analysis of single structural components, such as columns or slabs, to explosive loads have been examined in the literature, but the studies on blast response and damage analysis of structural frames in multi-storey buildings is limited and this is necessary for assessing the vulnerability of them. This paper investigates the blast response and damage evaluation of reinforced concrete (RC) frames, designed for normal gravity loads, in order to evaluate their remaining life. Numerical modelling and analysis were carried out using the explicit finite element software, LS DYNA. The modelling and analysis takes into consideration reinforcement details together and material performance under higher strain rates. Damage indices for columns are calculated based on their residual and original capacities. Numerical results generated in the can be used to identify relationships between the blast load parameters and the column damage. Damage index curve will provide a simple means for assessing the damage to a typical multi-storey building RC frame under an external bomb circumstance.
Resumo:
The Digital Practice Ecosystem is a network of professional architectural, engineering and contracting firms, government agencies and professional bodies, academic, educational, and research institutions that have the shared goal of fostering changes in the construction industry through applications of digital practice. Changing the process of designing and constructing buildings using digital models will improve quality and efficiency and reduce costs allowing completion on time and on budget.
Resumo:
The design of a building is a complicated process, having to formulate diverse components through unique tasks involving different personalities and organisations in order to satisfy multi-faceted client requirements. To do this successfully, the project team must encapsulate an integrated design that accommodates various social, economic and legislative factors. Therefore, in this era of increasing global competition integrated design has been increasingly recognised as a solution to deliver value to clients.----- The ‘From 3D to nD modelling’ project at the University of Salford aims to support integrated design; to enable and equip the design and construction industry with a tool that allows users to create, share, contemplate and apply knowledge from multiple perspectives of user requirements (accessibility, maintainability, sustainability, acoustics, crime, energy simulation, scheduling, costing etc.). Thus taking the concept of 3-dimensional computer modelling of the built environment to an almost infinite number of dimensions, to cope with whole-life construction and asset management issues in the design of modern buildings. This paper reports on the development of a vision for how integrated environments that will allow nD-enabled construction and asset management to be undertaken. The project is funded by a four-year platform grant from the Engineering and Physical Sciences Research Council (EPSRC) in the UK; thus awarded to a multi-disciplinary research team, to enable flexibility in the research strategy and to produce leading innovation. This paper reports on the development of a business process and IT vision for how integrated environments will allow nD-enabled construction and asset management to be undertaken. It further develops many of the key issues of a future vision arising from previous CIB W78 conferences.
Resumo:
Research and innovation in the built environment is increasingly taking on an inter-disciplinary nature. The built environment industry and professional practice have long adopted multi and inter-disciplinary practices. The application of IT in Construction is moving beyond the automation and replication of discrete mono and multi-disciplinary tasks to replicate and model the improved inter-disciplinary processes of modern design and construction practice. A major long-term research project underway at the University of Salford seeks to develop IT modelling capability to support the design of buildings and facilities that are buildable, maintainable, operable, sustainable, accessible, and have properties of acoustic, thermal and business support performance that are of a high standard. Such an IT modelling tool has been the dream of the research community for a long time. Recent advances in technology are beginning to make such a modelling tool feasible.----- Some of the key problems with its further research and development, and with its ultimate implementation, will be the challenges of multiple research and built environment stakeholders sharing a common vision, language and sense of trust. This paper explores these challenges as a set of research issues that underpin the development of appropriate technology to support realisable advances in construction process improvements.
Resumo:
John Frazer's architectural work is inspired by living and generative processes. Both evolutionary and revolutionary, it explores informatin ecologies and the dynamics of the spaces between objects. Fuelled by an interest in the cybernetic work of Gordon Pask and Norbert Wiener, and the possibilities of the computer and the "new science" it has facilitated, Frazer and his team of collaborators have conducted a series of experiments that utilize genetic algorithms, cellular automata, emergent behaviour, complexity and feedback loops to create a truly dynamic architecture. Frazer studied at the Architectural Association (AA) in London from 1963 to 1969, and later became unit master of Diploma Unit 11 there. He was subsequently Director of Computer-Aided Design at the University of Ulter - a post he held while writing An Evolutionary Architecture in 1995 - and a lecturer at the University of Cambridge. In 1983 he co-founded Autographics Software Ltd, which pioneered microprocessor graphics. Frazer was awarded a person chair at the University of Ulster in 1984. In Frazer's hands, architecture becomes machine-readable, formally open-ended and responsive. His work as computer consultant to Cedric Price's Generator Project of 1976 (see P84)led to the development of a series of tools and processes; these have resulted in projects such as the Calbuild Kit (1985) and the Universal Constructor (1990). These subsequent computer-orientated architectural machines are makers of architectural form beyond the full control of the architect-programmer. Frazer makes much reference to the multi-celled relationships found in nature, and their ongoing morphosis in response to continually changing contextual criteria. He defines the elements that describe his evolutionary architectural model thus: "A genetic code script, rules for the development of the code, mapping of the code to a virtual model, the nature of the environment for the development of the model and, most importantly, the criteria for selection. In setting out these parameters for designing evolutionary architectures, Frazer goes beyond the usual notions of architectural beauty and aesthetics. Nevertheless his work is not without an aesthetic: some pieces are a frenzy of mad wire, while others have a modularity that is reminiscent of biological form. Algorithms form the basis of Frazer's designs. These algorithms determine a variety of formal results dependent on the nature of the information they are given. His work, therefore, is always dynamic, always evolving and always different. Designing with algorithms is also critical to other architects featured in this book, such as Marcos Novak (see p150). Frazer has made an unparalleled contribution to defining architectural possibilities for the twenty-first century, and remains an inspiration to architects seeking to create responsive environments. Architects were initially slow to pick up on the opportunities that the computer provides. These opportunities are both representational and spatial: computers can help architects draw buildings and, more importantly, they can help architects create varied spaces, both virtual and actual. Frazer's work was groundbreaking in this respect, and well before its time.
Resumo:
This is an initial report of the PolyU SD part of the team to study Pre-fabricated Building Design and Construction Methodology and marks the completion of Phase 1. It follows our first notes prepared for the meeting on 2 February that identified some critical issues including future lifestyles, life expectancy of buildings, sustainability, size, flexibility and planning considerations. It is also an expansion of our presentation in Dongguan on 23 February. It is not a comprehensive survey of existing approaches or possible ways forward, but it has homed in on certain specific issues and does give specific examples to make the suggestions concrete. It is recommended that more comprehensive research be done to establish previous work and experience internationally. It is also recommended that more research be done on lifestyles as a preliminary to developing at least three concepts for evaluation before proceeding to the detailed design of one concept for full prototyping and market testing. The goal at this point is not to define a single direction but to suggest several future trajectories for further consideration. By the same token, this report is not intended as an exhaustive description of the considerable base of knowledge and ideas brought by the PolyU team to this exciting task. Before taking on an issue of this magnitude and importance in the definition of Hong Kong's future, one must carry out a thoughtful analysis of the issues at hand and an informed definition of paradigms, directions, goals and methods whereby our energies can be best used in the next steps. This report is the result of this analysis
Resumo:
net sustainability. At best they reduce relative resource consumption. They still consume vast quantities of materials, energy, water and ecosystems during construction. Moreover, green buildings replace land and ecosystems with structures that, at the very best, only 'mimic' ecosystems<'). Mimicking nature is little compensation when we have lost a third of species that are integral parts of our life support system. Already, development has exceeded the Earth's ecological carrying capacity, so even 'restorative' design is not enough. Urban areas must be retrofitted to increase net bioregional carrying capacity - just to support existing or reduced population levels in cities. The eco-retrofitting of our built environment is therefore an essential precondition of achieving a sustainable society. But we need to eco-retrofit cities in ways that increase net sustainability, not just relative efficiency.