1000 resultados para 510 Mathematics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we derive an identity for the Fourier coefficients of a differentiable function f(t) in terms of the Fourier coefficients of its derivative f'(t). This yields an algorithm to compute the Fourier coefficients of f(t) whenever the Fourier coefficients of f'(t) are known, and vice versa. Furthermore this generates an iterative scheme for N times differentiable functions complementing the direct computation of Fourier coefficients via the defining integrals which can be also treated automatically in certain cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop several algorithms for computations in Galois extensions of p-adic fields. Our algorithms are based on existing algorithms for number fields and are exact in the sense that we do not need to consider approximations to p-adic numbers. As an application we describe an algorithmic approach to prove or disprove various conjectures for local and global epsilon constants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Der in dieser Arbeit wesentliche Fokus ist die Realisierung eines anwendungsbezogenen Konzeptes zur Förderung stochastischer Kompetenzen im Mathematikunterricht, die sich auf Entscheiden und Urteilen unter Unsicherheit beziehen. Von zentraler Bedeutung ist hierbei die alltagsrelevante Kompetenz, mit Problemen um bedingte Wahrscheinlichkeiten und Anwendungen des Satzes von Bayes umgehen zu können, die i.w.S. mit „Bayesianischem Denken“ bezeichnet wird. Die historische und theoretische Grundlage der Arbeit sind kognitionspsychologische Erkenntnisse zum menschlichen Urteilen unter Unsicherheit: Intuitive Formen probabilistischen Denkens basieren auf Häufigkeitsanschauungen (z.B. Piaget & Inhelder, 1975; Gigerenzer, 1991). Meine didaktischen Analysen ergaben aber, dass der Umgang mit Unsicherheit im üblichen Stochastikunterricht nach einer häufigkeitsbasierten Einführung des Wahrscheinlichkeitsbegriffes (der ja bekanntlich vielfältige Interpretationsmöglichkeiten aufweist) nur noch auf Basis der numerischen Formate für Wahrscheinlichkeiten (z.B. Prozentwerte, Dezimalbrüche) und entsprechenden Regeln gelehrt wird. Damit werden m.E. grundlegende Intuitionen von Schülern leider nur unzureichend beachtet. Das in dieser Arbeit detailliert entwickelte „Didaktische Konzept der natürlichen Häufigkeiten“ schlägt somit die konsequente Modellierung probabilistischer Probleme mit Häufigkeitsrepräsentationen vor. Auf Grundlage empirischer Laborbefunde und didaktischer Analysen wurde im Rahmen der Arbeit eine Unterrichtsreihe „Authentisches Bewerten und Urteilen unter Unsicherheit“ für die Sekundarstufe I entwickelt (Wassner, Biehler, Schweynoch & Martignon, 2004 auch als Band 5 der KaDiSto-Reihe veröffentlicht). Zum einen erfolgte eine Umsetzung des „Didaktischen Konzeptes der natürlichen Häufigkeiten“, zum anderen wurde ein Zugang mit hohem Realitätsbezug verwirklicht, in dem so genannte „allgemeinere Bildungsaspekte“ wie Lebensvorbereitung, eigenständige Problemlösefähigkeit, kritischer Vernunftgebrauch, Sinnstiftung, motivationale Faktoren etc. wesentliche Beachtung fanden. Die Reihe wurde auch im Rahmen dieser Arbeit in der Sekundarstufe I (fünf 9. Klassen, Gymnasium) implementiert und daraufhin der Unterrichtsgang detailliert bewertet und analysiert. Diese Arbeit stellt die Dissertation des Verfassers dar, die an der Universität Kassel von Rolf Biehler betreut wurde. Sie ist identisch mit der Erstveröffentlichung 2004 im Franzbecker Verlag, Hildesheim, der der elektronischen Veröffentlichung im Rahmen von KaDiSto zugestimmt hat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die vorliegende Unterrichtsreihe basiert auf zwei grundlegenden Vorstellungen zum Lernen und Lehren von Wahrscheinlichkeitsrechnung für Anfänger in der Sekundarstufe I. Zum einen ist die grundsätzliche Überzeugung der Autoren, dass ein sinnvoller und gewinnbringender Unterricht in Stochastik über den aufwendigeren Weg möglichst authentischer und konkreter Anwendungen im täglichen Leben gehen sollte. Demzufolge reicht eine Einkleidung stochastischer Probleme in realistisch wirkende Kontexte nicht, sondern es sollte eine intensive Erarbeitung authentischer Problemstellungen, z.B. mit Hilfe von realen Medientexten, erfolgen. Die Schüler sollen vor allem lernen, reale Probleme mathematisch zu modellieren und gefundene mathematische Ergebnisse für die reale Situation zu interpretieren und kritisch zu diskutieren. Eine weitere Besonderheit gegenüber traditionellen Zugängen zur Wahrscheinlichkeitsrechnung basiert auf kognitionspsychologischen Ergebnissen zur menschlichen Informationsverarbeitung. Durch eine Serie von Studien wurde gezeigt, dass Menschen – und natürlich auch Schüler – große Probleme haben, mit Wahrscheinlichkeiten (also auf 1 normierte Maße) umzugehen. Als viel einfacher und verständnisfördernder stellte sich die kognitive Verarbeitung von Häufigkeiten (bzw. Verhältnissen von natürlichen Zahlen) heraus. In dieser Reihe wird deshalb auf eine traditionelle formale Einführung der Bayesschen Regel verzichtet und es werden spezielle, auf Häufigkeiten basierende Hilfsmittel zur Lösungsfindung verwendet. Die erwähnten Studien belegen den Vorteil dieser Häufigkeitsdarstellungen gegenüber traditionellen Methoden im Hinblick auf den sofortigen und insbesondere den längerfristigen Lernerfolg (vgl. umfassend zu diesem Thema C. Wassner (2004). Förderung Bayesianischen Denkens, Hildesheim: Franzbecker, http://nbn-resolving.org/urn:nbn:de:hebis:34-2006092214705). Die vorliegende Schrift wurde zuerst im Jahre 2004 als Anhang zur o.g. Schrift bei Franzbecker Hildesheim veröffentlicht. Der Verlag hat einer elektronischen Veröffentlichung in der KaDiSto-Reihe zugestimmt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper we concentrate on solving sequences of nonsymmetric linear systems with block structure arising from compressible flow problems. We attempt to improve the solution process by sharing part of the computational effort throughout the sequence. This is achieved by application of a cheap updating technique for preconditioners which we adapted in order to be used for our applications. Tested on three benchmark compressible flow problems, the strategy speeds up the entire computation with an acceleration being particularly pronounced in phases of instationary behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The motion of a viscous incompressible fluid flow in bounded domains with a smooth boundary can be described by the nonlinear Navier-Stokes equations. This description corresponds to the so-called Eulerian approach. We develop a new approximation method for the Navier-Stokes equations in both the stationary and the non-stationary case by a suitable coupling of the Eulerian and the Lagrangian representation of the flow, where the latter is defined by the trajectories of the particles of the fluid. The method leads to a sequence of uniquely determined approximate solutions with a high degree of regularity containing a convergent subsequence with limit function v such that v is a weak solution of the Navier-Stokes equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The method of approximate approximations is based on generating functions representing an approximate partition of the unity, only. In the present paper this method is used for the numerical solution of the Poisson equation and the Stokes system in R^n (n = 2, 3). The corresponding approximate volume potentials will be computed explicitly in these cases, containing a one-dimensional integral, only. Numerical simulations show the efficiency of the method and confirm the expected convergence of essentially second order, depending on the smoothness of the data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The method of approximate approximations, introduced by Maz'ya [1], can also be used for the numerical solution of boundary integral equations. In this case, the matrix of the resulting algebraic system to compute an approximate source density depends only on the position of a finite number of boundary points and on the direction of the normal vector in these points (Boundary Point Method). We investigate this approach for the Stokes problem in the whole space and for the Stokes boundary value problem in a bounded convex domain G subset R^2, where the second part consists of three steps: In a first step the unknown potential density is replaced by a linear combination of exponentially decreasing basis functions concentrated near the boundary points. In a second step, integration over the boundary partial G is replaced by integration over the tangents at the boundary points such that even analytical expressions for the potential approximations can be obtained. In a third step, finally, the linear algebraic system is solved to determine an approximate density function and the resulting solution of the Stokes boundary value problem. Even not convergent the method leads to an efficient approximation of the form O(h^2) + epsilon, where epsilon can be chosen arbitrarily small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a similar manner as in some previous papers, where explicit algorithms for finding the differential equations satisfied by holonomic functions were given, in this paper we deal with the space of the q-holonomic functions which are the solutions of linear q-differential equations with polynomial coefficients. The sum, product and the composition with power functions of q-holonomic functions are also q-holonomic and the resulting q-differential equations can be computed algorithmically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In dieser Arbeit werden zwei Aspekte bei Randwertproblemen der linearen Elastizitätstheorie untersucht: die Approximation von Lösungen auf unbeschränkten Gebieten und die Änderung von Symmetrieklassen unter speziellen Transformationen. Ausgangspunkt der Dissertation ist das von Specovius-Neugebauer und Nazarov in "Artificial boundary conditions for Petrovsky systems of second order in exterior domains and in other domains of conical type"(Math. Meth. Appl. Sci, 2004; 27) eingeführte Verfahren zur Untersuchung von Petrovsky-Systemen zweiter Ordnung in Außenraumgebieten und Gebieten mit konischen Ausgängen mit Hilfe der Methode der künstlichen Randbedingungen. Dabei werden für die Ermittlung von Lösungen der Randwertprobleme die unbeschränkten Gebiete durch das Abschneiden mit einer Kugel beschränkt, und es wird eine künstliche Randbedingung konstruiert, um die Lösung des Problems möglichst gut zu approximieren. Das Verfahren wird dahingehend verändert, dass das abschneidende Gebiet ein Polyeder ist, da es für die Lösung des Approximationsproblems mit üblichen Finite-Element-Diskretisierungen von Vorteil sei, wenn das zu triangulierende Gebiet einen polygonalen Rand besitzt. Zu Beginn der Arbeit werden die wichtigsten funktionalanalytischen Begriffe und Ergebnisse der Theorie elliptischer Differentialoperatoren vorgestellt. Danach folgt der Hauptteil der Arbeit, der sich in drei Bereiche untergliedert. Als erstes wird für abschneidende Polyedergebiete eine formale Konstruktion der künstlichen Randbedingungen angegeben. Danach folgt der Nachweis der Existenz und Eindeutigkeit der Lösung des approximativen Randwertproblems auf dem abgeschnittenen Gebiet und im Anschluss wird eine Abschätzung für den resultierenden Abschneidefehler geliefert. An die theoretischen Ausführungen schließt sich die Betrachtung von Anwendungsbereiche an. Hier werden ebene Rissprobleme und Polarisationsmatrizen dreidimensionaler Außenraumprobleme der Elastizitätstheorie erläutert. Der letzte Abschnitt behandelt den zweiten Aspekt der Arbeit, den Bereich der Algebraischen Äquivalenzen. Hier geht es um die Transformation von Symmetrieklassen, um die Kenntnis der Fundamentallösung der Elastizitätsprobleme für transversalisotrope Medien auch für Medien zu nutzen, die nicht von transversalisotroper Struktur sind. Eine allgemeine Darstellung aller Klassen konnte hier nicht geliefert werden. Als Beispiel für das Vorgehen wird eine Klasse von orthotropen Medien im dreidimensionalen Fall angegeben, die sich auf den Fall der Transversalisotropie reduzieren lässt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die Arbeit soll einen Einblick in die Theorie der Kettenbrüche geben. Wir haben gesehen, dass schwer greifbare Zahlen als Kettenbrüche ausgedrückt werden können. Es ist besonders hervorzuheben, dass irrationale Zahlen mit Hilfe einer Abschätzung vereinfacht durch Kettenbrüche dargestellt werden können. Weiter sind wir auch darauf eingegangen, wie wir Kettenbrüche wieder in eine rationale Darstellung umwandeln können. Es wurde gezeigt, wie wir rationale Zahlen als endlichen Kettenbrüche schreiben können. Die endlichen Kettenbrüche lieferten uns dann die Grundlage, um unendliche zu betrachten, wobei das größte Augenmerk darauf gerichtet war, dass wir eine irrationale Zahl durch einen unendlichen Kettenbruch abschätzen können. Den Kern der Arbeit bildet der Kettenbruch-Algorithmus, mit dessen Hilfe wir irrationale Zahlen in einen Kettenbruch umwandeln können. Ein wichtiger Aspekt sind auch die Abschätzungen, die wir vorgenommen haben. Mit ihrer Hilfe können wir sehen, wie dicht die letzte Konvergente der Kettenbruchentwicklung an der gesuchten irrationalen Zahl liegt. Da die Konvergenten immer aus teilerfremden Zählern und Nennern bestehen, können wir sogar sagen, dass eine Konvergente die beste Approximation an eine irrationale Zahl bietet. Es ist die beste Approximation in dem Sinne, dass keine rationale Zahl mit kleinerem oder gleichem Nenner existiert, die die irrationale Zahl besser annähert. Ein weiterer wichtiger Aspekt der Kettenbruchtheorie ist, dass quadratische Irrationalitäten endlich durch einen periodischen Kettenbruch dargestellt werden können. Es ist bemerkenswert, dass Kettenbrüche von quadratischen Irrationalitäten eine Regelmäßigkeit aufweisen, so dass sie endlich als periodicher Kettenbruch geschrieben werden können.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grenzwertberechnung ist ein unbeliebtes Gebiet der Mathematik. Jeder Schüler hasst es. Das liegt daran, dass es kein universelles Kochrezept gibt, das einen automatisch zur Lösung führt. Statt dessen muss man verschiedenste Ansätze daraufhin überprüfen, ob sie einen einer Lösung näher bringen. Computeralgebra leidet unter dem gleichen Problem, denn Computer lieben Kochrezepte ebenfalls. Entsprechend haben manche Computeralgebrasysteme auch heute noch starke Probleme mit Grenzwerten. 1996 stellte Dominik Gruntz in seiner Dissertation "On Computing Limits in a Symbolic Manipulation System" einen Algorithmus vor, der eine Vielzahl komplexer Grenzwertaufgaben souverän und schnell lösen kann und der dennoch durch seine Einfachheit und Überschaubarkeit besticht. Ziel dieser Diplomarbeit ist es, den Algorithmus von Dominik Gruntz vorzustellen und im Computeralgebrasystem Mathematica zu implementieren.