910 resultados para 3D feature extraction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose an endpoint detection system based on the use of several features extracted from each speech frame, followed by a robust classifier (i.e Adaboost and Bagging of decision trees, and a multilayer perceptron) and a finite state automata (FSA). We present results for four different classifiers. The FSA module consisted of a 4-state decision logic that filtered false alarms and false positives. We compare the use of four different classifiers in this task. The look ahead of the method that we propose was of 7 frames, which are the number of frames that maximized the accuracy of the system. The system was tested with real signals recorded inside a car, with signal to noise ratio that ranged from 6 dB to 30dB. Finally we present experimental results demonstrating that the system yields robust endpoint detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While 3D thin-slab coronary magnetic resonance angiography (MRA) has traditionally been performed using a Cartesian acquisition scheme, spiral k-space data acquisition offers several potential advantages. However, these strategies have not been directly compared in the same subjects using similar methodologies. Thus, in the present study a comparison was made between 3D coronary MRA using Cartesian segmented k-space gradient-echo and spiral k-space data acquisition schemes. In both approaches the same spatial resolution was used and data were acquired during free breathing using navigator gating and prospective slice tracking. Magnetization preparation (T(2) preparation and fat suppression) was applied to increase the contrast. For spiral imaging two different examinations were performed, using one or two spiral interleaves, during each R-R interval. Spiral acquisitions were found to be superior to the Cartesian scheme with respect to the signal-to-noise ratio (SNR) and contrast-to-noise-ratio (CNR) (both P < 0.001) and image quality. The single spiral per R-R interval acquisition had the same total scan duration as the Cartesian acquisition, but the single spiral had the best image quality and a 2.6-fold increase in SNR. The double-interleaf spiral approach showed a 50% reduction in scanning time, a 1.8-fold increase in SNR, and similar image quality when compared to the standard Cartesian approach. Spiral 3D coronary MRA appears to be preferable to the Cartesian scheme. The increase in SNR may be "traded" for either shorter scanning times using multiple consecutive spiral interleaves, or for enhanced spatial resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma catecholamines provide a reliable biomarker of sympathetic activity. The low circulating concentrations of catecholamines and analytical interferences require tedious sample preparation and long chromatographic runs to ensure their accurate quantification by HPLC with electrochemical detection. Published or commercially available methods relying on solid phase extraction technology lack sensitivity or require derivatization of catecholamine by hazardous reagents prior to tandem mass spectrometry (MS) analysis. Here, we manufactured a novel 96-well microplate device specifically designed to extract plasma catecholamines prior to their quantification by a new and highly sensitive ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method. Processing time, which included sample purification on activated aluminum oxide and elution, is less than 1 h per 96-well microplate. The UPLC-MS/MS analysis run time is 2.0 min per sample. This UPLC-MS/MS method does not require a derivatization step, reduces the turnaround time by 10-fold compared to conventional methods used for routine application, and allows catecholamine quantification in reduced plasma sample volumes (50-250 μL, e.g., from children and mice).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The noise power spectrum (NPS) is the reference metric for understanding the noise content in computed tomography (CT) images. To evaluate the noise properties of clinical multidetector (MDCT) scanners, local 2D and 3D NPSs were computed for different acquisition reconstruction parameters.A 64- and a 128-MDCT scanners were employed. Measurements were performed on a water phantom in axial and helical acquisition modes. CT dose index was identical for both installations. Influence of parameters such as the pitch, the reconstruction filter (soft, standard and bone) and the reconstruction algorithm (filtered-back projection (FBP), adaptive statistical iterative reconstruction (ASIR)) were investigated. Images were also reconstructed in the coronal plane using a reformat process. Then 2D and 3D NPS methods were computed.In axial acquisition mode, the 2D axial NPS showed an important magnitude variation as a function of the z-direction when measured at the phantom center. In helical mode, a directional dependency with lobular shape was observed while the magnitude of the NPS was kept constant. Important effects of the reconstruction filter, pitch and reconstruction algorithm were observed on 3D NPS results for both MDCTs. With ASIR, a reduction of the NPS magnitude and a shift of the NPS peak to the low frequency range were visible. 2D coronal NPS obtained from the reformat images was impacted by the interpolation when compared to 2D coronal NPS obtained from 3D measurements.The noise properties of volume measured in last generation MDCTs was studied using local 3D NPS metric. However, impact of the non-stationarity noise effect may need further investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: As the long-term survival of pancreatic head malignancies remains dismal, efforts have been made for a better patient selection and a tailored treatment. Tumour size could also be used for patient stratification. METHODS: One hundred and fourteen patients underwent a pancreaticoduodenectomy for pancreatic adenocarcinoma, peri-ampullary and biliary cancer stratified according to: ≤20 mm, 21-34 mm, 35-45 mm and >45 mm tumour size. RESULTS: Patients with tumour sizes of ≤20 mm had a N1 rate of 41% and a R1/2 rate of 7%. The median survival was 3.4 years. N1 and R1/2 rates increased to 84% and 31% for tumour sizes of 21-34 mm (P = 0.0002 for N, P = 0.02 for R). The median survival decreased to 1.6 years (P = 0.0003). A further increase in tumour size of 35-45 mm revealed a further increase of N1 and R1/2 rates of 93% (P < 0.0001) and 33%, respectively. The median survival was 1.2 years (P = 0.004). Tumour sizes >45 mm were related to a further decreased median survival of 1.1 years (P = 0.2), whereas N1 and R1/2 rates were 87% and 20%, respectively. DISCUSSION: Tumour size is an important feature of pancreatic head malignancies. A tumour diameter of 20 mm seems to be the cut-off above which an increased rate of incomplete resections and metastatic lymph nodes must be encountered and the median survival is reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. Quantification of daily upper-limb activity is a key determinant in evaluation of shoulder surgery. For a number of shoulder diseases, problem in performing daily activities have been expressed in terms of upper-limb usage and non-usage. Many instruments measure upper-limb movement but do not focus on the differentiations between the use of left or right shoulder. Several methods have been used to measure it using only accelerometers, pressure sensors or video-based analysis. However, there is no standard or widely used objective measure for upper-limb movement. We report here on an objective method to measure the movement of upper-limb and we examined the use of 3D accelerometers and 3D gyroscopes for that purpose. Methods. We studied 8 subjects with unilateral pathological shoulder (8 rotator cuff disease: 53 years old ± 8) and compared them to 18 control subjects (10 right handed, 8 left handed: 32 years old ± 8, younger than the patient group to be almost sure they don_t have any unrecognized shoulder pathology). The Simple Shoulder Test (SST) and Disabilities of the Arm and Shoulder Score (DASH) questionnaires were completed by each subject. Two modules with 3 miniature capacitive gyroscopes and 3 miniature accelerometers were fixed by a patch on the dorsal side of the distal humerus, and one module with 3 gyroscopes and 3 accelerometers were fixed on the thorax. The subject wore the system during one day (8 hours), at home or wherever he/she went. We used a technique based on the 3D acceleration and the 3D angular velocities from the modules attached on the humerus. Results. As expected, we observed that for the stand and sit postures the right side is more used than the left side for a healthy right-handed person(idem on the left side for a healthy left-handed person). Subjects used their dominant upper-limb 18% more than the non-dominant upper-limb. The measurements on patients in daily life have shown that the patient has used more his non affected and non dominant side during daily activity if the dominant side = affected shoulder. If the dominant side affected shoulder, the difference can be showed only during walking period. Discussion-Conclusion. The technique developed and used allowed the quantification of the difference between dominant and non dominant side, affected and unaffected upper-limb activity. These results were encouraging for future evaluation of patients with shoulder injuries, before and after surgery. The feasibility and patient acceptability of the method using body fixed sensors for ambulatory evaluation of upper limbs kinematics was shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this study is to determine the effectiveness of the Electrochemical Chloride Extraction (ECE) technique on a bridge deck with very high concentrations of chloride. This ECE technique was used during the summer of 2003 to reverse the effects of corrosion, which had occurred in the reinforcing steel embedded in the pedestrian bridge deck over Highway 6, along Iowa Avenue, in Iowa City, Iowa, USA. First, the half cell potential was measured to determine the existing corrosion level in the field. The half-cell potential values were in the indecisive range of corrosion (between -200 mV and -350 mV). The ECE technique was then applied to remove the chloride from the bridge deck. The chloride content in the deck was significantly reduced from 25 lb/cy to 4.96 lb/cy in 8 weeks. Concrete cores obtained from the deck were measured for their compressive strengths and there was no reduction in strength due to the ECE technique. Laboratory tests were also performed to demonstrate the effectiveness of the ECE process. In order to simulate the corrosion in the bridge deck, two reinforced slabs and 12 reinforced beams were prepared. First, the half-cell potentials were measured from the test specimens and they all ranged below -200 mV. Upon introduction of 3% salt solution, the potential reached up to -500 mV. This potential was maintained while a salt solution was being added for six months. The ECE technique was then applied to the test specimens in order to remove the chloride from them. Half-cell potential was measured to determine if the ECE technique can effectively reduce the level of corrosion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The infiltration of river water into aquifers is of high relevance to drinking-water production and is a key driver of biogeochemical processes in the hyporheic and riparian zone, but the distribution and quantification of the infiltrating water are difficult to determine using conventional hydrological methods (e.g., borehole logging and tracer tests). By time-lapse inverting crosshole ERT (electrical resistivity tomography) monitoring data, we imaged groundwater flow patterns driven by river water infiltrating a perialpine gravel aquifer in northeastern Switzerland. This was possible because the electrical resistivity of the infiltrating water changed during rainfall-runoff events. Our time-lapse resistivity models indicated rather complex flow patterns as a result of spatially heterogeneous bank filtration and aquifer heterogeneity. The upper part of the aquifer was most affected by the river infiltrate, and the highest groundwater velocities and possible preferential flow occurred at shallow to intermediate depths. Time series of the reconstructed resistivity models matched groundwater electrical resistivity data recorded on borehole loggers in the upper and middle parts of the aquifer, whereas the resistivity models displayed smaller variations and delayed responses with respect to the logging data. in the lower part. This study demonstrated that crosshole ERT monitoring of natural electrical resistivity variations of river infiltrate could be used to image and quantify 3D bank filtration and aquifer dynamics at a high spatial resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3D engineered modeling is a relatively new and developing technology that can provide numerous benefits to owners, engineers, contractors, and the general public. This manual is for highway agencies that are considering or are in the process of switching from 2D plan sets to 3D engineered models in their highway construction projects. It will discuss some of the benefits, applications, limitations, and implementation considerations for 3D engineered models used for survey, design, and construction. Note that is not intended to cover all eventualities in all states regarding the deployment of 3D engineered models for highway construction. Rather, it describes how one state—Iowa—uses 3D engineered models for construction of highway projects, from planning and surveying through design and construction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Our objective was to compare two state-of-the-art coronary MRI (CMRI) sequences with regard to image quality and diagnostic accuracy for the detection of coronary artery disease (CAD). SUBJECTS AND METHODS: Twenty patients with known CAD were examined with a navigator-gated and corrected free-breathing 3D segmented gradient-echo (turbo field-echo) CMRI sequence and a steady-state free precession sequence (balanced turbo field-echo). CMRI was performed in a transverse plane for the left coronary artery and a double-oblique plane for the right coronary artery system. Subjective image quality (1- to 4-point scale, with 1 indicating excellent quality) and objective image quality parameters were independently determined for both sequences. Sensitivity, specificity, and accuracy for the detection of significant (> or = 50% diameter) coronary artery stenoses were determined as defined in invasive catheter X-ray coronary angiography. RESULTS: Subjective image quality was superior for the balanced turbo field-echo approach (1.8 +/- 0.9 vs 2.3 +/- 1.0 for turbo field-echo; p < 0.001). Vessel sharpness, signal-to-noise ratio, and contrast-to-noise ratio were all superior for the balanced turbo field-echo approach (p < 0.01 for signal-to-noise ratio and contrast-to-noise ratio). Of the 103 segments, 18% of turbo field-echo segments and 9% of balanced turbo field-echo segments had to be excluded from disease evaluation because of insufficient image quality. Sensitivity, specificity, and accuracy for the detection of significant coronary artery stenoses in the evaluated segments were 92%, 67%, 85%, respectively, for turbo field-echo and 82%, 82%, 81%, respectively, for balanced turbo field-echo. CONCLUSION: Balanced turbo field-echo offers improved image quality with significantly fewer nondiagnostic segments when compared with turbo field-echo. For the detection of CAD, both sequences showed comparable accuracy for the visualized segments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les problèmes d'écoulements multiphasiques en média poreux sont d'un grand intérêt pour de nombreuses applications scientifiques et techniques ; comme la séquestration de C02, l'extraction de pétrole et la dépollution des aquifères. La complexité intrinsèque des systèmes multiphasiques et l'hétérogénéité des formations géologiques sur des échelles multiples représentent un challenge majeur pour comprendre et modéliser les déplacements immiscibles dans les milieux poreux. Les descriptions à l'échelle supérieure basées sur la généralisation de l'équation de Darcy sont largement utilisées, mais ces méthodes sont sujettes à limitations pour les écoulements présentant de l'hystérèse. Les avancées récentes en terme de performances computationnelles et le développement de méthodes précises pour caractériser l'espace interstitiel ainsi que la distribution des phases ont favorisé l'utilisation de modèles qui permettent une résolution fine à l'échelle du pore. Ces modèles offrent un aperçu des caractéristiques de l'écoulement qui ne peuvent pas être facilement observées en laboratoire et peuvent être utilisé pour expliquer la différence entre les processus physiques et les modèles à l'échelle macroscopique existants. L'objet premier de la thèse se porte sur la simulation numérique directe : les équations de Navier-Stokes sont résolues dans l'espace interstitiel et la méthode du volume de fluide (VOF) est employée pour suivre l'évolution de l'interface. Dans VOF, la distribution des phases est décrite par une fonction fluide pour l'ensemble du domaine et des conditions aux bords particulières permettent la prise en compte des propriétés de mouillage du milieu poreux. Dans la première partie de la thèse, nous simulons le drainage dans une cellule Hele-Shaw 2D avec des obstacles cylindriques. Nous montrons que l'approche proposée est applicable même pour des ratios de densité et de viscosité très importants et permet de modéliser la transition entre déplacement stable et digitation visqueuse. Nous intéressons ensuite à l'interprétation de la pression capillaire à l'échelle macroscopique. Nous montrons que les techniques basées sur la moyenne spatiale de la pression présentent plusieurs limitations et sont imprécises en présence d'effets visqueux et de piégeage. Au contraire, une définition basée sur l'énergie permet de séparer les contributions capillaires des effets visqueux. La seconde partie de la thèse est consacrée à l'investigation des effets d'inertie associés aux reconfigurations irréversibles du ménisque causé par l'interface des instabilités. Comme prototype pour ces phénomènes, nous étudions d'abord la dynamique d'un ménisque dans un pore angulaire. Nous montrons que, dans un réseau de pores cubiques, les sauts et reconfigurations sont si fréquents que les effets d'inertie mènent à différentes configurations des fluides. A cause de la non-linéarité du problème, la distribution des fluides influence le travail des forces de pression, qui, à son tour, provoque une chute de pression dans la loi de Darcy. Cela suggère que ces phénomènes devraient être pris en compte lorsque que l'on décrit l'écoulement multiphasique en média poreux à l'échelle macroscopique. La dernière partie de la thèse s'attache à démontrer la validité de notre approche par une comparaison avec des expériences en laboratoire : un drainage instable dans un milieu poreux quasi 2D (une cellule Hele-Shaw avec des obstacles cylindriques). Plusieurs simulations sont tournées sous différentes conditions aux bords et en utilisant différents modèles (modèle intégré 2D et modèle 3D) afin de comparer certaines quantités macroscopiques avec les observations au laboratoire correspondantes. Malgré le challenge de modéliser des déplacements instables, où, par définition, de petites perturbations peuvent grandir sans fin, notre approche numérique apporte de résultats satisfaisants pour tous les cas étudiés. - Problems involving multiphase flow in porous media are of great interest in many scientific and engineering applications including Carbon Capture and Storage, oil recovery and groundwater remediation. The intrinsic complexity of multiphase systems and the multi scale heterogeneity of geological formations represent the major challenges to understand and model immiscible displacement in porous media. Upscaled descriptions based on generalization of Darcy's law are widely used, but they are subject to several limitations for flow that exhibit hysteric and history- dependent behaviors. Recent advances in high performance computing and the development of accurate methods to characterize pore space and phase distribution have fostered the use of models that allow sub-pore resolution. These models provide an insight on flow characteristics that cannot be easily achieved by laboratory experiments and can be used to explain the gap between physical processes and existing macro-scale models. We focus on direct numerical simulations: we solve the Navier-Stokes equations for mass and momentum conservation in the pore space and employ the Volume Of Fluid (VOF) method to track the evolution of the interface. In the VOF the distribution of the phases is described by a fluid function (whole-domain formulation) and special boundary conditions account for the wetting properties of the porous medium. In the first part of this thesis we simulate drainage in a 2-D Hele-Shaw cell filled with cylindrical obstacles. We show that the proposed approach can handle very large density and viscosity ratios and it is able to model the transition from stable displacement to viscous fingering. We then focus on the interpretation of the macroscopic capillary pressure showing that pressure average techniques are subject to several limitations and they are not accurate in presence of viscous effects and trapping. On the contrary an energy-based definition allows separating viscous and capillary contributions. In the second part of the thesis we investigate inertia effects associated with abrupt and irreversible reconfigurations of the menisci caused by interface instabilities. As a prototype of these phenomena we first consider the dynamics of a meniscus in an angular pore. We show that in a network of cubic pores, jumps and reconfigurations are so frequent that inertia effects lead to different fluid configurations. Due to the non-linearity of the problem, the distribution of the fluids influences the work done by pressure forces, which is in turn related to the pressure drop in Darcy's law. This suggests that these phenomena should be taken into account when upscaling multiphase flow in porous media. The last part of the thesis is devoted to proving the accuracy of the numerical approach by validation with experiments of unstable primary drainage in a quasi-2D porous medium (i.e., Hele-Shaw cell filled with cylindrical obstacles). We perform simulations under different boundary conditions and using different models (2-D integrated and full 3-D) and we compare several macroscopic quantities with the corresponding experiment. Despite the intrinsic challenges of modeling unstable displacement, where by definition small perturbations can grow without bounds, the numerical method gives satisfactory results for all the cases studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho teve como objetivo indicar algumas possíveis manipulações ecofisiológicas, com base em experimentos de arquitetura de plantas. Plantas de erva-mate, seringueira e videira foram caracterizadas no campo e no laboratório, e suas maquetes 3D foram reconstruídas com os programas V-Plants e PlantGLViewer. Indicações sobre a análise de crescimento e impactos ambientais, com a aplicação de diversas simulações, foram discutidas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report describes a short-term study undertaken to investigate the potential for using dense three-dimensional (3D) point clouds generated from light detection and ranging (LIDAR) and photogrammetry to assess roadway roughness. Spatially continuous roughness maps have potential for the identification of localized roughness features, which would be a significant improvement over traditional profiling methods. This report specifically illustrates the use of terrestrial laser scanning (TLS) and photogrammetry using a process known as structure from motion (SFM) to acquire point clouds and illustrates the use of these point clouds in evaluating road roughness. Five roadway sections were chosen for scanning and testing: three gravel road sections, one portland cement concrete (PCC) section, and one asphalt concrete (AC) section. To compare clouds obtained from terrestrial laser scanning and photogrammetry, the coordinates of the clouds for the same section on the same date were matched using open source computer code. The research indicates that the technologies described are very promising for evaluating road roughness. The major advantage of both technologies is the large amount of data collected, which allows the evaluation of the full surface. Additional research is needed to further develop the use of dense 3D point clouds for roadway assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim  Avoiding 'mini-laparotomy' to extract a colectomy specimen may decrease wound complications and further improve recovery after laparoscopic surgery. The aim of this study was to develop a new technique for transrectal specimen extraction (TRSE) and to compare it with conventional laparoscopy (CL) for left sided colectomy. Method  Eleven patients with benign disease requiring either sigmoid or left colon resection underwent TRSE. The unfired circular stapler was inserted transanally and used as a guide to suture-close the recto-sigmoid junction laparoscopically and as a handle to pull the sutured sigmoid through the opened rectum inside a laparoscopic camera bag. The anvil was inserted into the lumen of the intussuscepted sigmoid and pushed to the level of the anastomosis. The anastomosis was fashioned end-to-end in the first patients and side-to-end in the following patients to improve safety. Intra-operative and postoperative outcomes of patients undergoing TRSE were compared with those of a group of 20 patients undergoing CL, who were matched for type of resection, body mass index and age. Results  The procedure was successful in all but the first patient who was converted to conventional laparoscopic colectomy without any additional morbidity. Two patients in the end-to-end anastomosis group, but none in the side-to-end group, developed peri-anastomotic sepsis. Compared with CL, patients undergoing TRSE did not show any significant differences in operative time, recovery or morbidity. Conclusion  Transrectal specimen extraction after left colectomy using the circular stapler technique is feasible. A side-to-end anastomosis appears safer than an end-to-end anastomosis. Further studies are needed to explore the potential advantages of this procedure over CL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Respiratory motion is a major source of artifacts in cardiac magnetic resonance imaging (MRI). Free-breathing techniques with pencil-beam navigators efficiently suppress respiratory motion and minimize the need for patient cooperation. However, the correlation between the measured navigator position and the actual position of the heart may be adversely affected by hysteretic effects, navigator position, and temporal delays between the navigators and the image acquisition. In addition, irregular breathing patterns during navigator-gated scanning may result in low scan efficiency and prolonged scan time. The purpose of this study was to develop and implement a self-navigated, free-breathing, whole-heart 3D coronary MRI technique that would overcome these shortcomings and improve the ease-of-use of coronary MRI. A signal synchronous with respiration was extracted directly from the echoes acquired for imaging, and the motion information was used for retrospective, rigid-body, through-plane motion correction. The images obtained from the self-navigated reconstruction were compared with the results from conventional, prospective, pencil-beam navigator tracking. Image quality was improved in phantom studies using self-navigation, while equivalent results were obtained with both techniques in preliminary in vivo studies.