992 resultados para 28S rDNA gene


Relevância:

20.00% 20.00%

Publicador:

Resumo:

被子植物的rRNA基因已经得到深入研究。二倍体被子植物一般拥有1-4对18S-5.8S-26S rDNA位点和1-2对5S rDNA位点。作为特殊的多基因家族成员,rDNA会受均一化力 (homogenizing forces) 的作用,通过基因转换、不等交换等机制,形成基因的致同进化 (concerted evolution)。长期以来,我们一直认为动植物rDNA致同进化水平很高,各种拷贝的序列几乎完全一致,因此可以直接应用PCR测序的方法进行分子系统学研究。但是在裸子植物中由于研究资料的匮乏,使我们对裸子植物rDNA的变异模式了解甚少。松属植物作为裸子植物的最大类群,它的rDNA变异和进化有何特点、与被子植物是否相同,是这个重要类群的进化研究中目前尚未解决的问题。本文的研究内容从三个方面进行: (1)rDNA的染色体定位 目前,松属的18S-5.8S-26S rDNA的染色体定位研究只包括5种植物,其中的3种同时涉及到5S rDNA定位。这些研究结果表明,不同种存在相异的rDNA位点数目,甚至不同的个体的rDNA位点均有变化。其共同点是,18S-5.8S-26S rDNA位点数平均较被子植物多,5S rDNA除Pinus radiata外,在其它种里则与被子植物相似。这种现象是松属或裸子植物的共同特征,亦或是特例呢?有限的研究限制了对裸子植物rDNA的了解。本研究的目的之一就是研究松属植物rDNA的染色体空间分布特征,希望借此了解松属植物间的关系,比较裸子植物和被子植物rDNA在染色体组水平的差异。 (2)5S rDNA的分子进化 5S rDNA的序列水平的进化研究在松属中尚属空白。5S rDNA在染色体数目上没有显示裸子植物与被子植物的差异,是否意味着松属乃至裸子植物的5S rDNA也同被子植物一样——致同进化完全,序列高度一致呢?利用克隆测序方法对松属植物5S rDNA的研究无疑是有开创性的工作,可以探讨裸子植物的5S rDNA的进化机制和种间关系。 (3)杂种基因组研究 杂交物种的起源演化是当前生物学研究的热点,通过杂种基因组的研究,可以了解杂种的的基因组构成,组织方式和进化历史,探讨杂交事件对成种过程的影响及意义。这项研究涉及到高山松、云南松和油松。之所以采用这三种植物,因为等位酶、cpDNA和mtDNA证据证明高山松为油松和云南松的自然杂交种。但这些证据不足以反映杂种核基因组的重组特征和构成及其进化规律。我们利用rDNA-FISH、5S rDNA和基因组原位杂交分析三种松树间的基因组关系,为揭示高山松的进化机制和历史提供新的依据。 本项研究得到以下结果: 一. rDNA荧光原位杂交 (FISH) 通过对华山松和白皮松两种单维管束亚属植物及油松、云南松、高山松、马尾松和南亚松等五种双维管束亚属植物的18S rDNA与5S rDNA的荧光原位杂交,结果表明: ⑴ 裸子植物的18S rDNA位点数目明显多于二倍体被子植物。其中主要位点数目,油松有7对,高山松5对,云南松8对,马尾松10对,南亚松6对,白皮松3对,华山松10对,平均在7对;另外,部分松树还存在弱位点。无论强弱位点都有部分存在于染色体的着丝粒区,除了赤松 (Pinus densiflora),在其它松科植物中并没有发现这种现象。究竟是基因转移的结果或该位点是18S rDNA的原始起源位置还有待确证。 ⑵ 5S rDNA位点相对变异较小,与被子植物相当。除了华山松5S rDNA有4对位点,马尾松只有1对位点外,其它松树的5S rDNA位点数目均为2对,并且在双维管束亚属植物中有一对属于弱位点。 ⑶ 两种rDNA存在不同连锁模式。双维管束亚属植物中,5S与18S rDNA连锁在同一染色体的同一臂或两条臂上。在同一染色体臂时,18S rDNA在臂的远端。单维管束亚属植物的5S与18S rDNA或连锁于同一染色体的同一臂上,或分别处于不同染色体。前一情况,5S rDNA位于臂的远端。据此可以说明两个亚属的rDNA结构在染色体组水平的很大分化。 ⑷ 松属植物的关系及高山松核型特征。由于5S与18S rDNA连锁关系的不同,可以将单维管束亚属和双维管束亚属分开。各亚属的不同物种可以依据杂交位点的多少、位置、信号强弱构成的核型图加以区分,并且构成一定的系统关系。杂交起源的高山松在染色体组上,表现出对油松和云南松两亲本不同染色体特征的分别继承与重组,并产生独有的特征。其II同源染色体之一18S rDNA位点的缺失,可能是染色体重组的痕迹。 二. 5S rDNA的序列变异与分子进化 利用分子克隆和DNA测序分析了油松、云南松、马尾松、白皮松和不同遗传背景的高山松居群的5S rRNA基因序列变异及基因进化规律,得到以下主要结果: ⑴ 5S rDNA的结构特征。双维管束亚属植物长度在658-728 bp,白皮松则为499-521 bp。长度差异体现在基因间隔区,而基因区极端保守,基本为120 bp。基因转录区内部存在着转录控制区,决定了5S rRNA的转录起始与转录效率。5S rRNA基因能够折叠成正常的二级结构,其中,相对于干区来说,环区要保守,但环E却表现出异乎寻常的变异,转换/颠换比值高达7.1,这种突变可能是假基因的产物。基因间隔区存在一定的保守单元,其中一些与转录的起始和终止调控相关,有些是裸子植物未知功能的特异保守区。 ⑵ 松属植物5S rDNA存在着基因组内与种间的异质性。基因组内的各个克隆中有超过80%的特异的,彼此不相同。整个5S rDNA分化距离为0.042 - 0.051,其中,间隔区的分化比基因区高,其速度约是基因区的3-7倍。比较种间5S rDNA序列发现:在122个克隆中,基因区只有50个特异的序列。基因组间的序列变异度与基因组内 (个体内) 没有明显差别。白皮松的间隔区与双维管束亚属松树的5S rDNA间隔区差异极大,几乎不能排序,而四种双维管束亚属植物的5S rDNA间隔区种间种内差异不大。 ⑶ 松属植物5S rDNA进化。PAUP分析建立的5S rRNA基因树显示,5S rRNA基因在基因组内是多系的 (polyphyletic),表明成种事件以前,祖先种就已经存在序列的分化。观测到的5S rRNA基因序列变异状况,并非完全是致同进化或独立进化的单一因素造成的,而是二者的相互作用的结果。致同进化确实存在,只是速度较慢而已。 ⑷ 高山松5S rDNA 组成。高山松拥有最高的基因组内的序列多样性,高山松的5S rDNA拷贝既有亲本类型,又有重组类型,并且不同地理及遗传来源的高山松显示一定的分化趋势,有更多的拷贝来自母系亲本。 三. 基因组原位杂交 以油松和云南松总DNA作为探针,相互进行基因组原位杂交,结果显示云南松和油松的染色体组可以完全被对方探针标记,在现有基因组原位杂交的分辨率下不能将两个基因组区分开。说明云南松和油松基因组之间存在高比例的同源序列,两种松树的基因组组成十分相似。利用油松和云南松总DNA作为探针,对高山松的染色体组进行双探针基因组原位杂交。结果表明,高山松全部基因组都能与两亲本探针完全杂交,说明三者间有着异乎寻常的亲缘关系。但在PH失调影响下,高山松只有部分基因组被杂交,并且两种探针的杂交信号有轻微差异。这可能是高度重复序列优先杂交的结果。这些情况表明,高山松虽然在基因组构成上与两个亲本基本一致,但基因在染色体组的空间排布上是存在差异的,这一点可以从rDNA-FISH中证明。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

  松科植物的核基因组十分庞大,基因常形成复杂的基因家族,核rDNA ITS 区在基因组内和基因组间存在广泛的长度和序列变异,但染色体数目和核型却高度保守,几乎均为二倍体(2n=24),与被子植物频繁的多倍化和高度均一的ITS区形成鲜明对比;叶绿体、线粒体和核基因组分别为父系、母系及双亲遗传,这种独特的遗传体系组合为系统发育重建研究提供了便利条件。因此,松科植物不仅是阐明基因树/物种树这一理论问题的理想试材,而且是基因和基因组进化及核rDNA致同进化机制研究的好材料。此外,松科植物的进化历史悠久,很多类群经历了多次重大的地质历史事件,并呈各种间断分布格局,其生物地理学问题受到广泛关注。本文对落叶松属所有物种(L. lyallii除外)和大部分变种的叶绿体基因组trnT-trnF区、低拷贝核4CL基因家族 (4-香豆酸辅酶A连接酶基因)及多拷贝核rDNA ITS区进行了序列分析,重建了该属的系统发育并揭示了其地理分布格局的形成过程,同时基于克隆和基因谱系分析,探讨了核4CL和rDNA ITS这两个基因家族的进化式样及规律。   1. 叶绿体trnT-trnF区和核rDNA ITS区的研究结果表明:落叶松属的种间遗传分化程度很低,北美的种类构成一个单系分支,并为欧亚种类的姐妹群。短苞鳞的欧亚落叶松组和长苞鳞的欧亚红杉组之间的分化较早,接近欧亚和北美种类间的分化时间。换句话说,苞鳞长短的分化在落叶松属中至少发生过两次,其中一次在落叶松属分化的初期,另一次在北美的种类中。结合化石、地史及气候资料,我们推测:落叶松属的共同祖先通过白令陆桥扩散,并形成欧亚和北美两支,然后在不同的板块上独立进化。落叶松组的泛北极分布是冰期后的回迁形成的,而红杉组的物种在第三纪全球气温降低时向南迁移,进而形成东亚-北美间断分布,特别是欧亚红杉组的祖先曾伴随青藏高原的隆升而发生辐射分化。   2. 在落叶松属4CL基因家族的研究中共获得44个差异的克隆,除华北落叶松外,其它种类均含2-4个成员。系统发育分析表明: 4CL基因频繁发生重复/丢失,并导致谱系拣选。该基因在落叶松属的共同祖先中发生一次重复,形成4clA和4clB,4clA再次发生基因重复形成4clA1和4clA2。重复产生的这两对并系基因拷贝在进化速率上呈显著差异,其中一个拷贝的进化速率明显加快,可能与进化制约的减弱或功能分化有关。结合其它核基因的研究结果,我们推测频繁的基因重复/丢失可能是形成和维持松科植物庞大核基因组的重要机制之一。   3. 对落叶松属101个nrDNA ITS克隆进行了序列及分子进化分析,发现极少数克隆存在较大的长度及(或)序列变异,并可能为假基因或重组体,其它克隆间的序列分化水平较低。因而,落叶松属核rDNA的致同进化速率比松科中两个古老的属(松属和云杉属)快。该致同进化速率的加快可能与落叶松属年轻的进化历史及染色体上较少的rDNA位点数目有关。由于一些特异克隆含嵌合序列及极高的序列变异,推测它们可能来源于物种进化过程中染色体重排形成的小位点(minor loci)或为孤独基因(orphons)。此外,我们发现nrDNA ITS克隆的分布式样与落叶松属的分化及地理分布格局的形成有密切关系:在欧亚红杉组中,克隆常按分类群(物种或变种)形成单系分支,表明这些类群的分化曾伴随着强烈的nrDNA ITS奠基者效应;相反,在欧亚落叶松组中,所有物种的克隆均混杂在一起,说明这些物种的分化时间较晚或在冰期后回迁的过程中曾发生频繁的种间基因交流。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MOTIVATION: Synthetic lethal interactions represent pairs of genes whose individual mutations are not lethal, while the double mutation of both genes does incur lethality. Several studies have shown a correlation between functional similarity of genes and their distances in networks based on synthetic lethal interactions. However, there is a lack of algorithms for predicting gene function from synthetic lethality interaction networks. RESULTS: In this article, we present a novel technique called kernelROD for gene function prediction from synthetic lethal interaction networks based on kernel machines. We apply our novel algorithm to Gene Ontology functional annotation prediction in yeast. Our experiments show that our method leads to improved gene function prediction compared with state-of-the-art competitors and that combining genetic and congruence networks leads to a further improvement in prediction accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

松属植物的基因组十分庞大(大于20000Mbp),其中约90%是由重复序列组成的,我们对其结构和组成仍知之甚少。松属在系统分类上分为两个亚属:单维管束亚属和双维管束亚属。基因组大小研究发现单维管束亚属植物的基因组更大。rDNA作为一类有功能的多基因家族重复序列,其自身特性决定了它在基因组研究中的重要性。FISH技术为rDNA在染色体上物理定位提供了有力的工具。尽管现在对松属rDNA FISH已有不少报道,但主要集中在双维管束亚属,对单维管束亚属的研究几乎是空白。本研究选择5个单维管束亚属松属植物P. bungeana, P. koraiensis, P. armandii, P. wallichiana, P. strobus,进行rDNA FISH研究。旨在弄清18S-25S rDNA和5S rDNA在单维管束亚属植物染色体上的位点数目和分布模式。结合前人对松属双维管束亚属植物的工作,对单、双维管束亚属植物之间rDNA FISH结果进行比较,从而可以从整体上认识松属植物的18S-25S rDNA和5S rDNA在染色体上的分布式样。在此基础上进一步探讨18S-25S rDNA和5S rDNA这些重复序列在松属植物基因组结构和组成中的地位和作用。本研究主要结果如下: 1.rDNA FISH在松属染色体核型分析中的作用 本研究中5种松属单维管束亚属植物染色体数目均为2n=24,除最短一条染色体为亚中部着丝粒染色体外,其余11条均为中部着丝粒染色体,长度和臂比也十分接近,同源染色体的不容易鉴定,很难排出精确的核型。在我们的研究结果中,5个松属植物中,除了白皮松外,18S-25S rDNA和5S rDNA分布在12对染色体中的10对染色体上,这些位点可作为染色体标记,大大提高了同源染色体鉴定的准确度,但是染色体之间排序问题依然没有很好地解决。核型比较认为种间是否存在部分同源染色体关系也不是十分明确,仅Ⅺ号和Ⅻ号染色体有这种关系,这主要由于Ⅺ号和Ⅻ号染色体容易准确地鉴别出来。核型分析的精确仍有待增加标记来提高。 2.rDNA位点数目在松属两个亚属间的比较及其与基因组大小的关系 松属植物18S-25S rDNA位点通常为5-10个,5S rDNA位点为1-4个。其中单维管束亚属18S-25S rDNA位点通常为9-10个(除白皮松为4个外),5S rDNA位点为2- 4个;双维管束亚属为18S-25S rDNA位点通常为5-10个,5S rDNA位点通常为1-2个。而二倍体被子植物18S-25S rDNA位点通常为1-5个5S rDNA位点为1-3个。暗示18S-25S rDNA和5S rDNA位点数目多少和基因组大小还是有一定的相关性。因为松属植物的基因组比典型的二倍体被子植物大得多,单维管束亚属植物的的C-值又普遍比双维管束亚属植物的高。白皮松虽有些例外,18S-25S rDNA位点数目少,但信号强度大得多,代表拷贝数高,因此其基因组大小可以从rDNA拷贝数上得到解释。 3.18S-25S rDNA和5S rDNA位点在松属两个亚属之间的分布模式比较 18S-25S rDNA和5S rDNA位点在松属两个亚属染色体上的分布方式有明显不同,每个亚属均有两种分布形式,并形成各自稳定的分布模式。在单维管束植物中,18S-25S rDNA和5S rDNA位点或相邻分布于同一染色体同一臂上,5S rDNA位于臂的远端;或两位点分布于不同的染色体。而在双维管束植物中18S-25S rDNA和5S rDNA或相邻分布于同一染色体同一臂上,18S-25S rDNA在臂的远端;或两位点分布于同一染色体两条臂上。在两个亚属中,当18S-25S rDNA和5S rDNA位点位于同一条染色体臂上时,相对位置正好相反。这完全不同的rDNA分布模式的形成,可能与松属这两个亚属植物的物种形成和分化过程中染色体发生倒位或易位有关,暗示这两个亚属的基因组结构存在分化。但这各自的分布模式是否可以作为判断亚属的特征依据仍有待加大样本量证实。 4.rDNA 位点分布及变异具有系统学意义 rDNA FISH 结果符合分类中亲缘关系越近,分布模式越相似的原则,因而认为rDNA 位点在染色体上的分布模式,具有系统学意义。基于已知的松属植物rDNA FISH结果构建的系统关系,符合传统分类系统中对亚组划分。rDNA FISH结果与分子系统学的研究结果相比较认为,松属单维管亚属5种松中,以乔松和北美乔松关系最近,与同一个亚组的华山松稍远,与另一个亚组的红松更远。而白皮松作为一个特有的孑遗类群,系统位置比较特殊,分子系统学研究认为其处于基部的位置,本研究表明其rDNA位点有明显的特点:位点数目少,但信号强,反映了拷贝数多。那是否它就代表了祖先类群的位点分布模式,需要更多的基部类群的rDNA FISH结果支持。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

芍药属Paeonia是芍药科Paeoniacea内唯一的一个属。包括大约35个种,间断性的分布于北温带地区。其内三个组分别是牡丹组(sect. Moutan)、北美芍药组(sect. Onaepia)和芍药组(sect. Paeonia)。芍药组是芍药属中最大,也是唯一具有染色体倍性变化的一个组,现有大约25个种。其中,大约半数的种是四倍体(2n=20),主要分布于地中海地区。虽然有证据表明四倍体类群大多为异源起源,但芍药属内一致的核型、相似的形态和重叠的地理分布使得它们的起源和分类一直存在很大的争议。本研究利用了4个细胞核DNA片段(乙醇脱氢酶基因-Adh1和 Adh2;nrDNA的内转录间隔区-ITS;甘油-3磷酸乙酰转移酶基因-GPAT)和4个叶绿体DNA片段(matK基因;基因间隔区trnL-trnF、psbA-trnH和rps16-trnQ)对芍药组的网状进化进行部分重建。并在此基础上,对推测为杂交起源的P. anomala进行了形态学和细胞发生的研究。主要研究结果如下: 1. 芍药组的系统学 利用多个DNA分子标记(cpDNA: matK, rps16-trnQ; nrDNA: ITS, Adh1, Adh2),芍药组的二倍体和四倍体类群的系统发育被部分重建。基于最大简约法、贝叶斯法和最大似然法的系统发育分析表明: (a) 除P. tenuifolia之外,所有地中海地区分布的二倍体类群构成一个单系分支。该支与亚洲分布的二倍体类群以及P. tenuifolia成并系关系。 (b) 核和叶绿体DNA系统发育树的不一致,以及ITS、Adh基因的多态性的分析,表明部分二倍体类群间和四倍体类群间都存在杂交事件。这些类群包括:中国新疆阿勒泰地区分布的二倍体种P. anomala和P. intermedia(杂种个体XJ053);高加索地区分布的二倍体种P. tenuifolia和P. daurica(杂种个体H9933);土耳其分布的四倍体种P. mascula和P. kesrouanensis(杂交个体在两个居群中检测到)。 (c) 不一致的核和叶绿体DNA系统发育树,以及Adh基因表现出的相同多态性模式进一步支持早先的推测,即四倍体类群P. arietina是异源四倍体。同时扩大的数据分析显示P. obovata近缘类群为其母系亲本,P. tenuifolia近缘类群为其父系亲本。此外,形态上具有一定分化的两个亚种P. arietina ssp. arietina和P. arietina ssp. parnassica是多次起源。 (d) 现今地中海分布类群的近缘种参与了四倍体种P. kesrouanensis 和P. coriacea,以及P. wittmanniana和P. mascula的物种形成。依据Adh序列种内的多态性,初步推测P. kesrouanensis 和P. coriacea可能是异源四倍体,其另一个亲本与P. arietina母系亲本近源。而P. wittmanniana和P. mascula可能是同源四倍体。 (e) P. saueri和P. peregrina的两个亲本类群分别与P. tenuifolia和现今地中海分布二倍体种的近缘类群。 (f) Adh1基因序列中近缘的重组类型暗示:四倍体种P. macrophylla和P. banatica很可能是同倍性杂种。 2. P. anomala的杂交起源和细胞发生 P. anomala新疆阿勒泰地区分布的居群核型第一次被报道。该地区分布的类群核型为2A型(核型公式:2n = 2x = 10 = 6m+2sm+2st)。减数分裂的观察统计显示:阿勒泰地区所有检测个体都是臂内倒位杂合子。基于断片大小以及不同个体染色体桥和/或断片出现率的差异,我们发现该类群臂内倒位存在多态性。荧光原位杂交(FISH)证实P. anomala共有8个18S rDNA位点,并且定位了一个倒位片段在3号染色体的短臂上。此外,高频率的棒状二价体和单价体,以及低的同源染色体的配对系数说明该类群同源染色体间存在分化。染色体结构杂合能够导致部分花粉败育,所有被检测个体的花粉败育率约为8.8 – 29.4%。 扩大的居群取样以及多基因(cpDNA: matK, psbA-trnH, rps16-trnQ, trnL-trnF; nrDNA: ITS, Adh1, Adh2, Gpat)的系统发育分析,进一步支持P. anomala杂交起源于P. veitchii 和P. lactiflora的近缘类群。cpDNA片段和核DNA片段(ITS、GPAT)基因树间的不一致,以及P. anomala Adh1和Adh2序列表现出的多态性都支持该类群杂交起源的推测。不过,表型分析显示P. anomala在形态上偏向于P. veitchii。 3. P. obovata Maxim.四倍体类群的起源 与原先基于形态性状的认识不同,P. obovata 四倍体类群并不是一个严格意义上的同源四倍体。它起源于二倍体P. obovata中国和日本分布的两个地理亚种之间的杂交。Adh2基因仅在中国分布二倍体居群的扩增失败支持这一推测。此外,Adh基因系统发育分析显示:间断性分布于中国中部和中国东北部的四倍体类群是独立起源。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

分子系统发育分析的主要任务包括:(1)帮助建立生命之树(tree of life);(2)追踪基因和基因家族(gene family)的起源和进化, 以获知基因在进化过程中的功能分化和伴随发生的重要分子事件(key molecular events)和形态性状的关键创新(key innovation)。这两个方面在本研究中都有所涉及。对于前者,选用植物线粒体matR基因重建被子植物蔷薇类群的系统发育关系;对于后者,则以SET基因超家族为例,探讨其在真核生物中的进化分类以及与功能多样性的关系。 I 蔷薇类的分子系统学 蔷薇类(rosids)是基于分子数据建立的被子植物的主要分支之一,包含13个目,大约三分之一的被子植物物种。两个主要蔷薇类内部分支是豆类fabids(包含7个目)和锦葵类malvids(包含3个目)。然而,这两个分支内部,以及这两个分支与蔷薇类基部类群,包括牻牛儿苗目(Geraniales)、桃金娘目(Myrtales)和流苏子目(Crossosomatales)之间的关系大多是不清楚的。本研究中,我们选取174个物种来代表72个蔷薇类(rosids)的科,利用两个数据集,即线粒体matR单基因数据集和包括线粒体matR基因、两个质体基因(rbcL、 atpB)和一个核基因(18S rDNA) 的4基因数据集,重建蔷薇类在科以上分类阶元水平的系统发育关系。同时,还对线粒体matR基因的进化特征和用于大尺度系统发育分析的适合度和潜力进行了评价。 线粒体matR单基因数据支持malvids和大多数蔷薇类目的单系性质,然而,豆类(fabids)成员没有形成一个分支,其COM亚支,包括卫矛目(Celastrales)、酢浆草目(Oxalidales)、金虎尾目(Malpighiales)和蒜树科(Huaceae),分辨为锦葵类(malvids)的姐妹群。这个关系在最近根据花结构特征曾被提出过,但从未在之前的分子系统发育分析中得到分辨。4基因数据集支持首先是牻牛儿苗目(Geraniales),接着是桃金娘目(Myrtales)作为蔷薇类(rosids)的最基部的分支;流苏子目(Crossosomatales)是锦葵类(malvids)姐妹群,以及蔷薇类(rosids)的核心部分包括豆类(fabids),锦葵类(malvids)和流苏子目(Crossosomatales)。线粒体matR基因的进化特征分析显示,与两个叶绿体基因(rbcL 和atpB)比较,同义替代速率约是它们的1/4,而非同义替代速率接近于自身的同义替代速率,表明matR 基因具有松弛的选择压力。线粒体matR基因相对慢速的进化使非同源相似(homoplasious)突变减少,提高了系统发育信息的质量,同时,松弛的选择压力使非同义替代数量增加,弥补了慢速进化导致的系统发育信息数量不足的缺陷,这两个方面的结合使线粒体matR基因非常适用于被子植物在科以上水平的系统发育研究。 II SET基因超家族的系统发育基因组学分析 SET基因超家族基因编码含有SET结构域的蛋白,在真核生物中,SET-domain蛋白一般是多结构域(multi-domain)的。SET-domain蛋白具有对组蛋白H3和H4的N末端尾部进行赖氨酸残基甲基化修饰的酶活性;从异染色质形成到基因转录,甲基化的组蛋白广泛影响染色质水平的基因调控。依据SET结构域一级序列的相似性和结构域组织(domain architecture)特征,目前,SET-domain基因超家族被划分为4-7个家族。由于这些划分或者使用动物或者使用植物SET基因,只有少数其它类群的物种加入分析,因此这样的划分可能是不完整的。本研究采用系统发育基 因组学方法(phylogenomic approach),在真核生物范围内广泛取样,期望获得相对完整的SET-domain基因家族的 进化分类方案,在此基础上加深理解SET-domain基因的进化机制和功能多样性。 在提取了17个物种,代表5个真核超群的SET蛋白序列基础上,系统发育分析结合“结构域组织特征”鉴别了9个SET基因家族,其中一个是新的SET基因家族。以前的SET8和Class VI家族,及SMYD和SUV4-20家族分别合并为一个家族。大部分家族在进化过程中发生了2次以上的基因重复事件,通过获得不同的结构域产生具有不同功能的新基因。一个SET基因家族在进化过程中推测发生了从脊椎动物祖先向盘基网柄菌(Dictyostelium discoideum)的水平基因转移。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the regulatory mechanisms that are responsible for an organism's response to environmental change is an important issue in molecular biology. A first and important step towards this goal is to detect genes whose expression levels are affected by altered external conditions. A range of methods to test for differential gene expression, both in static as well as in time-course experiments, have been proposed. While these tests answer the question whether a gene is differentially expressed, they do not explicitly address the question when a gene is differentially expressed, although this information may provide insights into the course and causal structure of regulatory programs. In this article, we propose a two-sample test for identifying intervals of differential gene expression in microarray time series. Our approach is based on Gaussian process regression, can deal with arbitrary numbers of replicates, and is robust with respect to outliers. We apply our algorithm to study the response of Arabidopsis thaliana genes to an infection by a fungal pathogen using a microarray time series dataset covering 30,336 gene probes at 24 observed time points. In classification experiments, our test compares favorably with existing methods and provides additional insights into time-dependent differential expression.