982 resultados para 2,4 dichlorophenol


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic nautical chart entitled: A chart of the harbour of Boston (sheet originally published in 1775). The map is [sheet 21] from the Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England, from surveys taken by Samuel Holland and published by J.F.W. Des Barres, 1781. Scale [ca. 1:25,000]. This layer is image 1 of 2 total images of the two sheet source map, representing the western portion of the map. Covers Boston and surrounding towns and Boston Harbor, Massachusetts. The image is georeferenced to the surface of the earth and fit to the 'World Mercator' (WGS 84) projected coordinate system. All map collar information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as harbors, inlets, rocks, channels, points, coves, shoals, islands, and more. Includes also selected land features such as cities and towns, roads, fortifications, and buildings. Relief is shown by hachures; depths by soundings and shading. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection. The entire Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England has been scanned and georeferenced as part of this selection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic nautical chart entitled: A chart of the harbour of Boston (sheet originally published in 1775). The map is [sheet 22] from the Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England, from surveys taken by Samuel Holland and published by J.F.W. Des Barres, 1781. Scale [ca. 1:25,000]. This layer is image 2 of 2 total images of the two sheet source map, representing the eastern portion of the map. Covers portion of Boston Harbor, Massachusetts and surrounding towns. The image is georeferenced to the surface of the earth and fit to the 'World Mercator' (WGS 84) projected coordinate system. All map collar information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as harbors, inlets, rocks, channels, points, coves, shoals, islands, and more. Includes also selected land features such as cities and towns, roads, fortifications, and buildings. Relief is shown by hachures; depths by soundings and shading. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection. The entire Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England has been scanned and georeferenced as part of this selection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the untitled, historic nautical chart: [A chart of Boston Bay] (sheet originally published in 1776). The map is [sheet 18] from the Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England, from surveys taken by Samuel Holland and published by J.F.W. Des Barres, 1781. Scale [ca. 1:50,000]. This layer is image 1 of 2 total images of the two sheet source map, representing the western portion of the map. Covers Boston and surroundings and portion of Boston Harbor. The image is georeferenced to the surface of the earth and fit to the 'World Mercator' (WGS 84) projected coordinate system. All map collar information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as harbors, inlets, rocks, channels, points, coves, shoals, islands, and more. Includes also selected land features such as cities and towns. Relief is shown by hachures; depths by soundings. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection. The entire Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England has been scanned and georeferenced as part of this selection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the untitled, historic nautical chart: [A chart of Massachusetts Bay & coast from Cape Ann to Cape Cod] (sheet originally published in 1776). The map is [sheet 16] from the Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England, from surveys taken by Samuel Holland and published by J.F.W. Des Barres, 1781. Scale [ca. 1:125,000]. This layer is image 2 of 2 total images of the two sheet source map, representing the eastern portion of the map. Covers portions of Massachusetts Bay, the coast of Massachusetts, and Cape Cod. The image is georeferenced to the surface of the earth and fit to the 'World Mercator' (WGS 84) projected coordinate system. All map collar information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as harbors, inlets, rocks, channels, points, coves, shoals, islands, and more. Includes also selected land features such as cities and towns. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection. The entire Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England has been scanned and georeferenced as part of this selection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the untitled, historic nautical chart: [A chart of Massachusetts Bay & coast from Cape Ann to Cape Cod] (sheet originally published in 1776). The map is [sheet 15] from the Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England, from surveys taken by Samuel Holland and published by J.F.W. Des Barres, 1781. Scale [ca. 1:125,000]. This layer is image 1 of 2 total images of the two sheet source map, representing the western portion of the map. Covers coast of Massachusetts, Boston Harbor, and portion of Massachusetts Bay. The image is georeferenced to the surface of the earth and fit to the 'World Mercator' (WGS 84) projected coordinate system. All map collar information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as harbors, inlets, rocks, channels, points, coves, shoals, islands, and more. Includes also selected land features such as cities and towns. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection. The entire Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England has been scanned and georeferenced as part of this selection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the untitled, historic nautical chart: [Nantucket Island and the eastern end of Martha's Vineyard] (sheet originally published in 1776). The map is [sheet 14] from the Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England, from surveys taken by Samuel Holland and published by J.F.W. Des Barres, 1781. Scale [ca. 1:54,000]. This layer is image 2 of 2 total images of the two sheet source map, representing the western portion of the map. Covers the eastern portion of Martha's Vineyard and a portion of Nantucket Sound. The image is georeferenced to the surface of the earth and fit to the 'World Mercator' (WGS 84) projected coordinate system. All map collar information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as harbors, inlets, rocks, channels, points, coves, shoals, islands, and more. Includes also selected land features such as cities and towns. Relief is shown by hachures; depths by soundings and shading. Includes sailing notes. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection. The entire Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England has been scanned and georeferenced as part of this selection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the untitled, historic nautical chart: [Nantucket Island and the eastern end of Martha's Vineyard] (sheet originally published in 1776). The map is [sheet 13] from the Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England, from surveys taken by Samuel Holland and published by J.F.W. Des Barres, 1781. Scale [ca. 1:54,000]. This layer is image 1 of 2 total images of the two sheet source map, representing the eastern portion of the map. Cover Nantucket Island, Massachusetts and surroundings. The image is georeferenced to the surface of the earth and fit to the 'World Mercator' (WGS 84) projected coordinate system. All map collar information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as harbors, inlets, rocks, channels, points, coves, shoals, islands, and more. Includes also selected land features such as cities and towns. Relief is shown by hachures; depths by soundings and shading. Includes sailing notes. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection. The entire Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England has been scanned and georeferenced as part of this selection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development of multi-target drugs for treating complex multifactorial diseases constitutes an active research ield. This kind of drugs has gained much importance as alternative strategy to combination therapy (“cocktail drugs”).1 A common way to design them brings together two different pharmacophores in one single molecule (so-called dyads). Following this idea and being aware that xanthones2 and 1,2,3-triazoles3 possess important pharmacological properties, we combined these two heterocycles in one molecule to create new dyads with improved therapeutic potential. In this work, new xanthone-1,2,3-triazole dyads were prepared from novel (E)-2-(4-arylbut-1-en-3-yn-1-yl)chromones by two different approaches to evaluate their eficiency and sustainability. Both methodologies involved Diels-Alder reactions to build the xanthone core, which were optimized using microwave irradiation as alternative heating method, and 1,3-dipolar cycloadditions to insert the 1,2,3-triazole moiety (Figure 1).4 All final and intermediate compounds were fully characterized by 1D and 2D NMR techniques.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In analogy to the [M(II)(bpy)(3)](2+) cations, where M(II) is a divalent transition-metal and bpy is 2,2'-bipyridine, the tris-chelated [M(III)(bpy)(3)](3+) cations, where M(III) is Cr(III) or Co(III), induce the crystallization of chiral, anionic three-dimensional (3D) coordination polymers of oxalate-bridged (&mgr;-ox) metal complexes with stoichiometries [M(II)(2)(ox)(3)](n)()(2)(n)()(-) or [M(I)M(III)(ox)(3)](n)()(2)(n)()(-). The tripositive charge is partially compensated by inclusion of additional complex anions like ClO(4)(-), BF(4)(-), or PF(6)(-) which are encapsulated in cubic shaped cavities formed by the bipyridine ligands of the cations. Thus, an elaborate structure of cationic and anionic species within a polymeric anionic network is realized. The compounds isolated and structurally characterized include [Cr(III)(bpy)(3)][ClO(4)] [NaCr(III)(ox)(3)] (1), [Cr(III)(bpy)(3)][ClO(4)][Mn(II)(2)(ox)(3)] (2), [Cr(III)(bpy)(3)][BF(4)] [Mn(II)(2)(ox)(3)] (3), [Co(III)(bpy)(3)][PF(6)][NaCr(III)(ox)(3)] (4). Crystal data: 1, cubic, P2(1)3, a = 15.523(4) Å, Z = 4; 2, cubic, P4(1)32, a = 15.564(3) Å, Z = 4; 3, cubic, P4(1)32, a = 15.553(3) Å, Z = 4; 4, cubic, P2(1)3, a = 15.515(3) Å, Z = 4. Furthermore, it seemed likely that 1,2-dithiooxalate (dto) could act as an alternative to the oxalate bridging ligand, and as a result the compound [Ni(II)(phen)(3)][NaCo(III)(dto)(3)].C(3)H(6)O (5) has successfully been isolated and structurally characterized. Crystal data: 5, orthorhombic, P2(1)2(1)2(1), a = 16.238(4) Å, b = 16.225(4) Å, c = 18.371(5) Å, Z = 4. In addition, the photophysical properties of compound 1 have been investigated in detail. In single crystal absorption spectra of [Cr(III)(bpy)(3)][ClO(4)][NaCr(III)(ox)(3)] (1), the spin-flip transitions of both the [Cr(bpy)(3)](3+) and the [Cr(ox)(3)](3)(-) chromophores are observed and can be clearly distinguished. Irradiating into the spin-allowed (4)A(2) --> (4)T(2) absorption band of [Cr(ox)(3)](3)(-) results in intense luminescence from the (2)E state of [Cr(bpy)(3)](3+) as a result of rapid energy transfer processes.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Paleo-sea-ice history in the Arctic Ocean was reconstructed using the sea-ice dwelling ostracode Acetabulastoma arcticum from late Quaternary sediments from the Mendeleyev, Lomonosov, and Gakkel Ridges, the Morris Jesup Rise and the Yermak Plateau. Results suggest intermittently high levels of perennial sea ice in the central Arctic Ocean during Marine Isotope Stage (MIS) 3 (25-45 ka), minimal sea ice during the last deglacial (16-11 ka) and early Holocene thermal maximum (11-5 ka) and increasing sea ice during the mid-to-late Holocene (5-0 ka). Sediment core records from the Iceland and Rockall Plateaus show that perennial sea ice existed in these regions only during glacial intervals MIS 2, 4, and 6. These results show that sea ice exhibits complex temporal and spatial variability during different climatic regimes and that the development of modern perennial sea ice may be a relatively recent phenomenon.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A deep-sea core over 16 m long from the crestal area of the Mediterranean Ridge has been investigated with different techniques, including quantitative micropaleontology, stable isotopes (measured on the epipelagic species Globigerinoides ruber and on the mesopelagic species Globorotalia inflata), and clay mineralogy. The resulting record of climatic fluctuations can be cross correlated to other Mediterranean cores by means of isochronous lithologies (tephra layers and sapropels). The climatic record of the Mediterranean is similar in character, phase, and chronology to the records investigated in the equatorial Pacific and in the Caribbean. Isotope stages 1 to 17 have been recognized. Cyclically repeated stagnant cycles resulting in sapropel deposition complicate both the isotopic and the faunal signal. The isotopic investigations reveal that the temperature change in the surface layers of the eastern Mediterranean was no greater than 8°C in the late "glacial" Pleistocene. The chronostratigraphic and biostratigraphic interpretation of Core KS09 indicate that the mean sedimentation rate was 2.4 cm/1000 years, a value very close to the 2.5 cm/1000 years calculated for the entire Quaternary section at DSDP Site 125, also located in the crestal area of the Mediterranean Ridge in the Ionian Basin. The base of KS09 is likely to be very close to the Brunhes/Matuyama boundary dated at 0.7 my.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Oxygen isotope records, radiocarbon AMS data, carbonate and opal stratigraphy, sediment magnetic susceptibility, tephrachronology, and paleontological results were used to obtain detailed sediment stratigraphy and an age model for the studied cores. For studying sea-ice sedimentation an analysis of lithogenic grain number in >0.15 mm grain size fraction of bottom sediments was carried out. For quantitative estimation of intensity ice-rafting debris sedimentation number of IRD particles per sq cm per ka was calculated. Obtained results allowed to plot IRD AR distribution for the first oxygen isotope stage (0-12.5 14C ka, 14C) and for the second stage (12.5-24 14C ka). The first stage was subdivided into the latest deglaciation and the beginning of Holocene (6-12.5 14C ka) (transitive period), when the sea level was changing significantly, and the second part of Holocene (0-6 14C ka), when climate conditions and the sea level were similar to modern estimates. Data clearly show strong increase in ice formation in the glacial Sea of Okhotsk and its extent in the middle part of the sea. Average annual duration of ice coverage during glaciation was longer than that for interglaciation. However the sea ice cover was not continuous all the year round and disappeared in summer time except the far northwestern part of the sea.