998 resultados para 1995_01200200 TM-34 4301602
Resumo:
Chert and associated host sediments from Monterey Formation and Deep Sea Drilling Project (DSDP) sequences were analyzed in order to assess chemical behavior during diagenesis of biogenic sediments. The primary compositional contrast between chert and host sediment is a greater absolute SiO2 concentration in chert, often with final SiO2 >=98 wt%. This contrast in SiO2 (and Si/Al) potentially reflects precursor sediment heterogeneity, diagenetic chemical fractionation, or both. SiO2 concentrations and Si/Al ratios in chert are far greater than in modern siliceous oozes, however and often exceed values in acid-cleaned diatom tests. Compositional contrasts between chert and host sediment are also orders-of-magnitude greater than between multiple samples of the host sediment. Calculations based on the initial composition of adjacent host, observed porosity reductions from host to chert and a postulated influx of pure SiO2, construct a chert composition which is essentially identical to observed SiO2 values in chert. Thus, precursor heterogeneity does not seem to be the dominant factor influencing the current chert composition for the key elements of interest. In order to assess the extent of chemical fractionation during diagenesis, we approximate the precursor composition by analyzing host sediments adjacent to the chert. The SiO2 concentration contrast seems caused by biogenic SiO2 dissolution and transport from the local adjacent host sediment and subsequent SiO2 reprecipitation in the chert. Along with SiO2, other elements are often added (with respect to Al) to Monterey and DSDP chert during silicification, although absolute concentrations decrease. The two Monterey quartz chert nodules investigated, in contrast to the opal-CT and quartz chert lenses, formed primarily by extreme removal of carbonate and phosphate, thereby increasing relative SiO2 concentrations. DSDP chert formed by both carbonate/phosphate dissolution and SiO2 addition from the host. Manganese is fractionated during chert formation, resulting in MnO/Al2O3 ratios that no longer record the depositional signal of the precursor sediment. REE data indicate only subtle diagenetic fractionation across the rare earth series. Ce/Ce* values do not change significantly during diagenesis of either Monterey or DSDP chert. Eu/Eu* decreases slightly during formation of DSDP chert. Normative La/Yb is affected only minimally as well. During formation of one Monterey opal-CT chert lens, REE/Al ratios show subtle distribution changes at Gd and to a lesser extent near Nd and Ho. REE compositional contrasts between diagenetic states of siliceous sediment and chert are of a vastly smaller scale than has been noted between different depositional environments of marine sediment, indicating that the paleoenvironmental REE signature is not obscured by diagenetic overprinting.
Resumo:
To establish a natural background and its temporal and spatial variability for the area around Casey Station in the Windmill Islands, East Antarctica, the authors studied major and trace element concentrations and the distribution of organic matter in marine and lacustrine sediments. A wide range of natural variability in trace metal concentrations was identified between sites and within a time scale of 9 ka (e.g., Ni 5-37 mg/kg, Cu 20-190 mg/kg, Zn 50-300 mg/kg, Pb 4.5- 34 mg/kg). TOC concentrations are as high as 3 wt.% at the marine sites and 20 wt.% at the lacustrine sites, and indicate highly productive ecosystems. These data provide a background upon which the extent of human impact can be established, and existing data indicate negligible levels of disturbance. Geochemical and lithological data for a lacustrine sediment core from Beall Lake confirm earlier interpretation of recent climatic changes based on diatom distribution, and the onset of deglaciation in the northern part of the Windmill Islands between 8.6 and 8.0 ka BP. The results demonstrate that geochemical and lithological data can not only be used to define natural background values, but also to assess long-term climatic changes of a specific environment. Other sites, however, preserve a completely different sedimentary record. Therefore, inferred climatic record, and differences between sites, can be ascribed to differences in elevation, distance from the shore, water depth, and local catchment features. The extreme level of spatial variability seems to be a feature of Antarctic coastal areas, and demonstrates that results obtained from a specific site cannot be easily generalized to a larger area.
Resumo:
A collection of layered ferromanganese ores (27 samples) from the Atlantic and Pacific oceans was studied. Trace element and PGE contents were determined layer-by-layer (up to 10 microlayers) in 13 of these samples. The trace, rare earth, and platinum group element distributions, including their layer-to-layer variations, were compared in hydrogenic and hydrothermal crusts from different regions. It was found that the main PGE variations (by a factor of 10-50) are related to their layer-to-layer variations within a given ore field. The distributions of PGE and trace elements are strongly heterogeneous, which is related, first, to different contents of the elements in the layers of different age in ferromanganese crusts (FMC) and, second, to the observed regional heterogeneity and influence of hydrothermal fluids. Geochemical data indicate that CFC formation was mainly caused by the hydrochemical precipitation of material from seawater. This process was accompanied by diagenetic phenomena, water-rock interaction, and influence of volcanic and hydrothermal sources.