993 resultados para 198-1212A
Resumo:
小檗科是毛茛类的核心成员之一,属于较原始的被子植物类群。目前有关该科在毛茛类的系统位置还没有一致的意见。一种观点认为它与毛茛科有密切关系,属于本目中较原始的一支;另一些学者则根据小檗科与罂粟科在心皮结构上的相似性提出它们有较近的亲缘关系,并可能在毛茛类中处于较高的演化水平上。小檗科的范畴与科内系统至今仍存在着较大争论。自本世纪初以来已有若干系统发表,其中有的采取广义小檗科的概念,而有的则分别成立2-4个科。在生殖结构演化方面,有关小檗科植物花的一些形态学本质,如花基数、蜜腺来源、心皮性质等仍有待揭示。因此,有必要对该科的结构、分化和系统发育进行深入的研究。 本研究首次报导了小檗科9属植物的花部形态发生、10属植物胚胎发育、9属植物的种皮纹饰和八角莲属与桃儿七属的rbcL基因全序列。并综合已有的研究资料,对小檗科的系统学问题进行了讨论。主要实验结果及结论如下: 1花部形态发生 小檗科植物典型花部形态为三数轮列、雄蕊与花瓣对生、单生心皮、侧生胎座。花器官发育的独特性状包括雄蕊与花瓣以共同原基方式发生;心皮原基环形、周缘组织等速向上发育而建成瓶状心皮,不形成腹缝线。我们认为,三基数在小檗科植物中可能是共同起源的,为典型轮列花;花瓣(蜜腺叶)来源于花瓣一雄蕊共同原基,而小檗属、十大功劳属、兰山草属花瓣上的小囊状蜜腺是其本身的附属结构,与雄蕊无关;雄蕊与花瓣对生来源于雄蕊一花瓣共同原基的发生方式;小檗科的心皮发生方式在毛茛类中是独特的,它不同于Hell (1981,198 3)描述的囊状心皮. 2胚胎学 小檗科植物的主要胚胎学性状有:腺质绒毡层,药室内壁带状加厚,2细胞花粉粒,胚珠具双珠被、厚珠心,珠孔由内外珠被组成,直线型大孢子4分体,蓼型、稀待宵草型(红毛七属)或葱型(桃儿七属)胚囊,反足细胞宿存,核型胚乳,柳叶草型或茄型胚胎发生。根据小檗科各属植物的胚胎学与种皮表面雕纹性状的分化,小檗科可以划分为:南天竹属,小檗属一十大功劳属,红毛七属一牡丹草属一狮足草属,山荷叶属一八角莲属一桃儿七属一足叶草属,淫羊藿属一鲜黄连属5个属群。说明胚胎学性状对揭示本科植物属间及属群间系统关系有较大的价值。 3分子数据 利用本研究测得的八角莲属、桃儿七属rbcL基因序列,结合从GenBank中得到的小檗科其他9属、毛茛科(4属)、防己科(2属)和木通科(1属)的rbcL序列,用PAUP软件进行分支分析。支持广义小檗科是单系类群的观点;.山荷叶属、八角莲属和桃儿七属构成的分支得到Bootstrap分析的完全支持(100%),3属植物是科内的一个自然类群;具x=6染色体基数的草本属间存在密切关系(90%);十大功劳属与兰山草属近缘(73%);南天竹属与红毛七属可能有一定联系(53%)。 4系统排列 广义小檗科(17属)为一单系类群得到本研究所获得的花形态发生、胚胎学和分子证据支持;综合各学科的研究结果提出小檗科分5族系统的建议.其系统排列为:1).南天竹族,含南天竹属1属.2).小檗族,分小檗亚族(小檗属、十大功劳属)和兰山草亚族(草本的兰山草属),共3属.3).狮足草族,含红毛七属、狮足草属和牡丹草属3属。4).足叶草族,分足叶草亚族(足叶草属、八角莲属与桃儿七属)和山荷叶亚族(山荷叶属),共4属.5).淫羊藿族,分淫羊藿亚族(淫羊藿属、 Vancou ver ia、Jef fersonia、鲜黄连属与Bongardia)和裸花草亚族(裸花草属),共6属。 5系统位置 根据小檗科花形态发生的独特性状,如心皮瓶状发育、雄蕊一花瓣以共同原基发生、二者对生、花药瓣裂和分子系统学的结果,以及据已有资料比较,小檗科在毛茛目中的特征较独特,与毛茛科的关系较远。支持小檗科提升为目的处理。
Resumo:
NOAA’s Center for Coastal Monitoring and Assessment’s Biogeography Branch has mapped and characterized large portions of the coral reef ecosystems inside the U.S. coastal and territorial waters, including the U.S. Caribbean. The complementary protocols used in these efforts have enabled scientists and managers to quantitatively compare different marine ecosystems in tropical U.S. waters. The Biogeography Branch used these same general protocols to generate three seamless habitat maps of the Bank/Shelf (i.e., from 0 ≤50 meters) and the Bank/Shelf Escarpment (i.e., from 50 ≤1,000 meters and from 1,000 ≤ 1,830 meters) inside Buck Island Reef National Monument (BIRNM). While this mapping effort marks the fourth time that the shallow-water habitats of BIRNM have been mapped, it is the first time habitats deeper than 30 meters (m) have been characterized. Consequently, this habitat map provides information on the distribution of mesophotic and deep-water coral reef ecosystems and serves as a spatial baseline for monitoring change in the Monument. A benthic habitat map was developed for approximately 74.3 square kilometers or 98% of the BIRNM using a combination of semi-automated and manual classification methods. The remaining 2% was not mapped due to lack of imagery in the western part of the Monument at depths ranging from 1,000 to 1,400 meters. Habitats were interpreted from orthophotographs, LiDAR (Light Detection and Ranging) imagery and four different types of MBES (Multibeam Echosounder) imagery. Three minimum mapping units (MMUs) (100, 1,000 and 5,000 square meters) were used because of the wide range of depths present in the Monument. The majority of the area that was characterized was deeper than 30 m on the Bank/Shelf Escarpment. This escarpment area was dominated by uncolonized sand which transitioned to mud as depth increased. Bedrock was exposed in some areas of the escarpment, where steep slopes prevented sediment deposition. Mesophotic corals were seen in the underwater video, but were too sparsely distributed to be reliably mapped from the source imagery. Habitats on the Bank/Shelf were much more variable than those seen on the Bank/Shelf Escarpment. The majority of this shelf area was comprised of coral reef and hardbottom habitat dominated by various forms of turf, fleshy, coralline or filamentous algae. Even though algae was the dominant biological cover type, nearly a quarter (24.3%) of the Monument’s Bank/Shelf benthos hosted a cover of 10%-<50% live coral. In total, 198 unique combinations of habitat classes describing the geography, geology and biology of the sea-floor were identified from the three types of imagery listed above. No thematic accuracy assessment was conducted for areas deeper than about 50 meters, most of which was located in the Bank/Shelf Escarpment. The thematic accuracy of classes in waters shallower than approximately 50 meters ranged from 81.4% to 94.4%. These thematic accuracies are similar to those reported for other NOAA benthic habitat mapping efforts in St. John (>80%), the Main Eight Hawaiian Islands (>84.0%) and the Republic of Palau (>80.0%). These digital maps products can be used with confidence by scientists and resource managers for a multitude of different applications, including structuring monitoring programs, supporting management decisions, and establishing and managing marine conservation areas. The final deliverables for this project, including the benthic habitat maps, source imagery and in situ field data, are available to the public on a NOAA Biogeography Branch website (http://ccma.nos.noaa.gov/ecosystems/coralreef/stcroix.aspx) and through an interactive, web-based map application (http://ccma.nos.noaa.gov/explorer/biomapper/biomapper.html?id=BUIS). This report documents the process and methods used to create the shallow to deep-water benthic habitat maps for BIRNM. Chapter 1 provides a short introduction to BIRNM, including its history, marine life and ongoing research activities. Chapter 2 describes the benthic habitat classification scheme used to partition the different habitats into ecologically relevant groups. Chapter 3 explains the steps required to create a benthic habitat map using a combination of semi-automated and visual classification techniques. Chapter 4 details the steps used in the accuracy assessment and reports on the thematic accuracy of the final shallow-water map. Chapter 5 summarizes the type and abundance of each habitat class found inside BIRNM, how these habitats compare to past habitat maps and outlines how these new habitat maps may be used to inform future management activities.
Resumo:
利用发根农杆菌(Agrobacterium rhizogenes)1601,1000,1500,15834,A4,均成功地转化了中药青蒿(Artemisia annua L.)并且建立了pRi1601,pRi15834,pRiA4诱导的发根培养。pRi1601,pRi15834的发根诱导率比其它质粒高。太老或太幼的叶片不利子发根的诱导;发根主要从叶脉的伤口处萌发;带顶芽或带侧芽的叶片容易诱导根,但不一定是发根。光照有利于发根的诱导和发根的生长。以每个发根的“绝对生长速率”(Gtowth Ratio,GR)和绝对“侧根”数量(Number of Side Roots,NSR),通过大量的发根系的筛选,建立了8个发根系,1601-L-1, 1601-L-2, 1601-L-3, 1601-L-4, 15834-L-1, 1601-P-I, 16 01-P-2,15834-L-2。Southern分子检测表明,160l-1-1,1801-L-2, 1601-L-3,1601-L-4,1601-P-1,1601-P-2均为转化子。8个建立的发根系之间无论生长或者QHS的合成存在明显的差异。比较光/暗(16/8hrs),25℃条件下培养的16 01-L-1,1601-L-2,1601-L-3,1601-L-4,1601-P-l,和1601-P-2,其中16 01-L-3的生长最快,160l-L-1的生长最慢;但是,1601-L-1的QHS的含量最高(可达1. 048%),1601-1-3的QHS的含量最低。160Z-L-3,15834 -L-1和2583:1-L-2的生长速率相差不大。用盛有l000mLMS液体培养基的3000mL的锥形瓶扩大培养1601-L -3,15834-L-1和15834-L-2,转速为ll0rlpm,培养过程中发根容易形成发根球(Hairy Root Balis,HRB),HRB的形成严重影响发根的生长和QHs的合成,HpLC分析表明扩大培养发根中QHS的含量比较低。 改变MS基本培养基中的无机离子的浓度,研究不同无机离子对发根生长和QHS的合成的影响。 l、KN03为18.79×10-3M时有利于1601- L-1生长,为14. 84×10-3M时有利于QHS的合成。NH-4N0-3浓度在10.93-12. 49×10—3M范围内有利于1601-L-1生长,在0-20.62×10-3M范围内对QHS的合成影响不大,大于20. 62×lO-3M不利QHS的合成。培养基中NH-4+/N0-3-比值为0. 37-0. 4-0.52:1时有利于发根的生长,比值为0.52 - 0.58:1时有利于QHS的合成。 2、H-2P0-4-浓度为2.498×10-3M时有利于发根的生长在0-2. 498×l0-3M范围内,随着浓度的提高,促进发根的生长。培养基中的H2P4 -的浓度在0-1.249×lO-3M的范围内,随着浓度的提高,促进QHS的合成,为1.249×10-3M时QHS的含量最高。 3、培养基中最适16 01-L-1生长的Ca-2+浓度为0.198- 0.766×10-3M,大于或小于该浓度范围,显著地抑制发根的生长。但是,在0-3.695×10-3M范围内,随着培养基中Ca-2+浓度提高,促进QHS的合成,最适Ca-2+浓度为3.695×l0-3M。 4、培养基中不加Mg-2+时,完全抑制发根生长,在0. 142×10-3M-7.506×l0-3M浓度范围内,对发根生长影响没有明显的差别。但是,HPLC和UV分析发根中QHS含量,培养基中不加Mg-2+时,发根中QHS含量最高。 5、培养基中的Fe-2+浓度在0. 25 -1.0×10-3M范围内,同时有利于16 01- L-1的生长和QHS的形成。 6、培养基中最适合予16 01- L-3生长的KI浓度为2.5ppm,大于或小予该浓度均显著地抑制发根的生长,培养基中加入KI明显地降低发根中的QHS的含量。 7、H2BO3对l601-L-l生长影响不大,HPLC分析QHS的含量,培养基中的H3BO3浓度为100ppm和400ppm,QHS的含量分别为1.69mg/g和1.80mg/g(DW)。 8、Cu-2+对1601-L-3的生长影响显著,最适合1601-L-3生长的Cu-2+浓度为1.00ppm,在0 -1.00ppm的浓度范围内,随着培养基中的Cu+浓度的提高,发根的生物量不断增加。培养基中QHS合成的最适Cu2+浓度为0.05ppm,大于或小于该浓度均显著地抑制发根中QHS的合成。 比较光培养和暗培养对发根生长的影响,结果表明光照明显地促进1601-L-l的生长,暗培养明显不利于发根的生长。最适合于发根生长的温度为25℃,大于35℃显著地抑制发根的生长,影响发根的根尖细胞的正常分裂。 改变培养基中的蔗糖浓度和在发根培养的不同时期给培养基中添加蔗糖,试验结果表明蔗糖作为碳源对1601-L-3和1601-L-1的生长具有显著的影响。 (1)培养基中缺少蔗糖显著地抑制发根的生长。 (2)发根培养的前5天时间内,蔗糖浓度为30- 60glL昀培养基最有利于发根的生长,50glL的培养基中的发根生长最快,培养基中的蔗糖浓度大于60g/L小于30g/L时,发根的生物量增加较少。 (3)发根培养至第15天时,蔗糖浓度为60g/L的培养基最有利予发根的生物量的增加。发根培养至30天时,蔗糖浓度为60-90g/L的培养基,发根的生物量的增加相差不大,但是为蔗糖浓度为30-40g/L的培养基中的发根生物量一倍。 (4)发根培养过程中,分别于第5和15天给蔗糖浓度为30g/L的培养基中添加一次或二次蔗糖,使培养基中的蔗糖终浓度相当于60g/L或90g/L,培养至30天时,添加蔗糖的培养基中的发根的干重生物量相当于不添加蔗糖培养基中的发根生物量一倍,相当于初始蔗糖浓度为60g/L和90g/L培养基中发根的生物量。 (5)随着培养基中蔗糖浓度的提高,发根干重/鲜重比显著增加。培养基中的蔗糖的消耗量与发根生物量的增加呈正相关,蔗糖消耗越多,发根生物量的增加越大。 比较pH值对发根生长和QHS合成的影响表明,灭菌前pH值在5.O-6.5范围内的培养基适合予1601-L-1的生长,小于5.O不利于发根的生长,pH5.8有利于1601-1-1生长和QHS的生物合成。发根收获时培养基中的pH值一般为4.5-5.2. pH7.O抑制发根的生长,pHl0.O对发根具有强烈的致死作用。发根在培养过程中,对培养基中的pH值具有显著的调节作用,发根能在很短的时间内(24- 48hrs)使pl:l值为5.8、6.4、7.0培养基降低到pH4. 5-5.2,pH为5.8的培养基有利于QHS合成。 比较不同基本培养基对发根生长和QHS合成的影响,试验结果表明N6、DCR、Litvay培养基有利于1601-L-1的生长,WS、White、B5培养基不利于发根的生长。DCR培养基中的QHS含量最高。 根据三水平试验选用三水平正交表来安排试验的原则,选用三水平正交表L7(3-),研究多因子效应对发根生长和QHS合成的影响,试验结果表明,Mg2+,Fe2+,Mn-2+,NH4NO3,KN03 ,KI,Ca-2+为发根生长的主要因子,NH4N03,KNOs,Mg2+,Ca2+,肌醇为QHS合成的主要因子。 通过TLC分析发根中QHS和其它化学成分,同时比较发根和无菌苗及野生植株的化学成分,发根和无菌苗均能合成包括QHS在内的野生青蒿叶片中的大部分非挥发性的化台 物。 研究青蒿植株在发育过程中QHS的含量的变化以及发根、无菌苗和野生青蒿中QHS的合成,HP分析结果表明,l、不同的单株青蒿之间的QHS量相差很大。2、同一植株幼 叶的QHS含量比老叶的QHS含量高。3、不同单株青蒿之间达到最高QHS含量的时间不一样,开花期或开花之前。4、无菌苗(带根)或者不带根丛生芽均能合成QHS,但是带根的无菌蕾的QHS量比丛生芽中的QIS的含量高。5、不同发根农杆菌转化的发根系1601-L-1和15834-L-1都能合成QHS。
Resumo:
On 10 July 1999, vertebrae bearing an oxytetracycline (OTC) time mark were retrieved from a tagged leopard shark (Triakis semifasciata) recaptured in San Francisco Bay, CA, after being at liberty for almost 20 years. An additional long-term leopard shark tag return was received in June 2001, for which growth information (but not vertebrae) was obtained. The first recapture is significant in that it represents the longest at-liberty period for an age-validated (OTC-injected) shark, extends and completes age validation for this species, spanning all age classes up to its estimated average maximum age, and provides an example of the persistence of the OTC time mark in an elasmobranch at liberty for almost 20 years. The recaptured leopard shark made in 2001 also provides valuable information on long-term growth from time of release to time of recapture. Findings are documented here so that other researchers are aware that validation is complete for this species, to present pertinent evidence of considerable interannual variability in growth in this species, and to report observations on processing difficulties relating to the ephemeral nature of the 20-yr-old OTC mark.