983 resultados para 195-1200


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here, we report the synthesis of TiO2/BiFeO3 nano-heterostnicture (NH) arrays by anchoring BiFeO3 (BFO) particles on on TiO2 nanotube surface and investigate their pseudocapacitive and photoelectrochemical properties considering their applications in green energy fields. The unique TiO2/BFO NHs have been demonstrated both as energy conversion and storage materials. The capacitive behavior of the NHs has been found to be significantly higher than that of the pristine TiO2 NTs, which is mainly due to the anchoring of redox active BFO nanoparticles. A specific capacitance of about 440 F g(-1) has been achieved for this NHs at a current density of 1.1 A g(-1) with similar to 80% capacity retention at a current density of 2.5 A g(-1). The NHs also exhibit high energy and power performance (energy density of 46.5 Wh kg(-1) and power density of 1.2 kW kg(-1) at a current density of 2.5 A g(-1)) with moderate cycling stability (92% capacity retention after 1200 cycles). Photoelectrochemical investigation reveals that the photocurrent density of the NHs is almost 480% higher than the corresponding dark current and it shows significantly improved photoswitching performance as compared to pure TiO2 nanotubes, which has been demonstrated based the interfacial type-II band alignment between TiO2 and BFO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two dinuclear copper(II) complexes Li(H2O)(3)(CH3OH)](4)Cu2Br4]Cu-2(cpdp)(mu-O2CCH3)](4)(OH)(2) (1), Cu (H2O)(4)]Cu-2(cpdp)(mu-O2CC6H5)](2)Cl-2 center dot 5H(2)O (2), and a dinuclear zinc(II) complex Zn-2(cpdp)(mu-O2CCH3)] (3) have been synthesized using pyridine and benzoate functionality based new symmetrical dinucleating ligand, N, N'-Bis2-carboxybenzomethyl]-N, N'-Bis2-pyridylmethyl]-1,3-diaminopropan-2-ol (H(3)cpdp). Complexes 1, 2 and 3 have been synthesized by carrying out reaction of the ligand H3cpdp with stoichiometric amounts of Cu-2(O2CCH3)(4)(H2O)(2)], CuCl2 center dot 2H(2)O/C6H5COONa, and Zn(CH3COO)(2)center dot 2H(2)O, respectively, in methanol in the presence of NaOH at ambient temperature. Characterizations of the complexes have been done using various analytical techniques including single crystal X-ray structure determination. The X-ray crystal structure analyses reveal that the copper(II) ions in complexes 1 and 2 are in a distorted square pyramidal geometry with Cu-Cu separation of 3.455(8) angstrom and 3.492(1)angstrom, respectively. The DFT optimized structure of complex 3 indicates that two zinc(II) ions are in a distorted square pyramidal geometry with Zn-Zn separation of 3.492(8)angstrom. UV-Vis and mass spectrometric analyses of the complexes confirm their dimeric nature in solution. Furthermore, H-1 and C-13 NMR spectroscopic investigations authenticate the integrity of complex 3 in solution. Variable-temperature (2-300 K) magnetic susceptibility measurements show the presence of antiferromagnetic interactions between the copper centers, with J = -26.0 cm(-1) and -23.9 cm(-1) ((H) over cap = -2JS(1)S(2)) in complexes 1 and 2, respectively. In addition, glycosidase-like activity of the complexes has been investigated in aqueous solution at pH similar to 10.5 by UV-Vis spectrophotometric technique using p-nitrophenyl-alpha-D-glucopyranoside (4) and p-nitrophenyl-beta-D-glucopyranoside (5) as model substrates. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cu(In,Al)Se-2 films are grown using single step electrodeposition technique. The film properties are studied by varying the deposition time from 500 to 2000 s. Peaks corresponding to elemental Se and Cu2Se phase started appearing from 1200 s of deposition. The composition is changed significantly after 1500 S. Se concentration increased from 57 to 68% with the increase in the deposition time. The Cu2Se phase is dominant in the films deposited for a duration of 2000 s and the grain size increased from 1.12 to 2.15 mu m in this film. Raman analysis confirmed the presence of Se and Cu2Se phase in C1200. In C1500 and C2000 the spectra showed prominent mode corresponding to Cu2Se. The thickness of the film increased from 0.85 to 2.3 mu m with the increase in the deposition time. All the films showed p-type conductivity and resistivity reduced with increased thickness. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurement of device current during switching characterisation of an insulated gate bipolar transistor (IGBT) requires a current sensor with low insertion impedance and high bandwidth. This study presents an experimental procedure for evaluating the performance of a coaxial current transformer (CCT), designed for the above purpose. A prototype CCT, which can be mounted directly on a power terminal of a 1200 V/50 A half-bridge IGBT module, is characterised experimentally. The measured characteristics include insertion impedance, gain and phase of the CCT at different frequencies. The bounds of linearity within which the CCT can operate without saturation are determined theoretically, and are also verified experimentally. The experimental study on linearity of the CCT requires a high-amplitude current source. A proportional-resonant (PR) controller-based current-controlled half-bridge inverter is developed for this purpose. A systematic procedure for selection of PR controller parameters is also reported in this study. This set-up is helpful to determine the limit of linearity and also to measure the frequency response of the CCT at realistic amplitudes of current in the low-frequency range.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gadolinium oxide, cerium oxide, and 10 mol% gadolinia doped ceria ceramic powders have been synthesized using combustion technique. Though the cubic gadolinia phase is stable at room temperature, single phase monoclinic gadolinia was obtained as a result of combustion synthesis using fuel lean and stoichiometric precursor compositions. This powder was subjected to calcination treatment and ceria doping to study the stability of phases and the rate of phase transformation from monoclinic to cubic gadolinia. It was found that monoclinic gadolinia transforms to cubic gadolinia upon calcination at temperatures less than 1200 degrees C. It was also found that rate of phase transformation is more for powder produced using fuel lean compositions; and the rate is enhanced upon ceria doping. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We formulate the problem of detecting the constituent instruments in a polyphonic music piece as a joint decoding problem. From monophonic data, parametric Gaussian Mixture Hidden Markov Models (GM-HMM) are obtained for each instrument. We propose a method to use the above models in a factorial framework, termed as Factorial GM-HMM (F-GM-HMM). The states are jointly inferred to explain the evolution of each instrument in the mixture observation sequence. The dependencies are decoupled using variational inference technique. We show that the joint time evolution of all instruments' states can be captured using F-GM-HMM. We compare performance of proposed method with that of Student's-t mixture model (tMM) and GM-HMM in an existing latent variable framework. Experiments on two to five polyphony with 8 instrument models trained on the RWC dataset, tested on RWC and TRIOS datasets show that F-GM-HMM gives an advantage over the other considered models in segments containing co-occurring instruments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hot deformation behavior of Nb-1 wt.%Zr alloy was studied using uniaxial compression tests carried out in vacuum to a true strain of 0.6 in the temperature range of 900 to 1700 degrees C and the strain rate range of 3 x 10(-3) to 10 s(-1). The optimum regime of hot workability of Nb-1Zr alloy was determined from the strain rate sensitivity (m) contour plots. A high m of about 02 was obtained in the temperature and strain rate range of 1200-1500 degrees C and 10(-3) to 10(-1) s(-1) and 1600-1700 degrees C and 10(-1) to 1 s(-1). Microstructure of the deformed samples showed features of dynamic recrystallization within the high strain rate sensitivity domain. Compared to the study on Nb-1Zr-0.1C alloy, Nb-1Zr showed a lower flow stress and an optimum hot working domain at lower temperatures. In the 1500 to 1700 degrees C range the apparent activation energy of deformation for Nb-1Zr was 259 kJ mol(-1), the stress exponent 5, and the activation volume about 200 to 700 b(3). (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the electronic and thermal transport properties of bulk MX2 compounds (M = Zr, Hf and X = S, Se) by first-principles calculations and semi-classical Boltzmann transport theory. The band structure shows the confinement of heavy and light bands along the out of plane and in-plane directions, respectively. This results in high electrical conductivity (sigma) and large thermopower leading to a high power factor (S-2 sigma) for moderate n-type doping. The phonon dispersion demonstrates low frequency flat acoustical modes, which results in low group velocities (v(g)). Consequently, lowering the lattice thermal conductivity (kappa(latt)) below 2 W/m K. Low kappa(latt) combined with high power factor results in ZT > 0.8 for all the bulk MX2 compounds at high temperature of 1200 K. In particular, the ZT(max) of HfSe2 exceeds 1 at 1400 K. Our results show that Hf/Zr based dichalcogenides are very promising for high temperature thermoelectric application. (C) 2015 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The derivation of a quasi-geostrophic system from the rotating shallow-water equations on a midlatitude -plane coupled with moisture is presented. Condensation is prescribed to occur whenever the moisture at a point exceeds a prescribed saturation value. It is seen that a slow condensation time-scale is required to obtain a consistent set of equations at leading order. Further, since the advecting wind fields are geostrophic, changes in moisture (and hence precipitation) occur only via non-divergent mechanisms. Following observations, a saturation profile with gradients in the zonal and meridional directions is prescribed. A purely meridional gradient has the effect of slowing down the dry Rossby waves, through a reduction in the equivalent gradient' of the background potential vorticity. A large-scale unstable moist mode results on the inclusion of a zonal gradient by itself, or in conjunction with a meridional moisture gradient. For gradients that are are representative of the atmosphere, the most unstable moist mode propagates zonally in the direction of increasing moisture, matures over an intraseasonal time-scale and has small phase speed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chromatin acetylation is attributed with distinct functional relevance with respect to gene expression in normal and diseased conditions thereby leading to a topical interest in the concept of epigenetic modulators and therapy. We report here the identification and characterization of the acetylation inhibitory potential of an important dietary flavonoid, luteolin. Luteolin was found to inhibit p300 acetyltransferase with competitive binding to the acetyl CoA binding site. Luteolin treatment in a xenografted tumor model of head and neck squamous cell carcinoma (HNSCC), led to a dramatic reduction in tumor growth within 4 weeks corresponding to a decrease in histone acetylation. Cells treated with luteolin exhibit cell cycle arrest and decreased cell migration. Luteolin treatment led to an alteration in gene expression and miRNA profile including up-regulation of p53 induced miR-195/215, let7C; potentially translating into a tumor suppressor function. It also led to down regulation of oncomiRNAs such as miR-135a, thereby reflecting global changes in the microRNA network. Furthermore, a direct correlation between the inhibition of histone acetylation and gene expression was established using chromatin immunoprecipitation on promoters of differentially expressed genes. A network of dysregulated genes and miRNAs was mapped along with the gene ontology categories, and the effects of luteolin were observed to be potentially at multiple levels: at the level of gene expression, miRNA expression and miRNA processing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cobalt integrated zinc oxide nanorod (Co-ZnO NR) array is presented as a novel heterostructure for ultraviolet (UV) photodetector (PD). Defect states in Co-ZnO NRs surface induces an enhancement in photocurrent as compared to pristine ZnO NRs PD. Presented Co-ZnO NRs PD is highly sensitive to external magnetic field that demonstrated 185.7% enhancement in response current. It is concluded that the opposite polarizations of electron and holes in the presence of external magnetic field contribute to effective separation of electron hole pairs that have drifted upon UV illumination. Moreover, Co-ZnO NRs PD shows a faster photodetection speed (1.2 s response time and 7.4 s recovery time) as compared to the pristine ZnO NRs where the response and recovery times are observed as 38 and 195 s, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of applied pressure on reactive hot pressing (RHP) of zirconium (Zr):graphite (C) in molar ratios of 1:0.5, 1:0.67, 1:0.8, and 1:1 was studied at 1200 degrees C for 60 min. The relative density achievable increased with increasing pressure and ranged from 99% at 4 MPa for ZrC0.5 to 93% for stoichiometric ZrC at 100 MPa. The diminishing influence of pressure on the final density with increasing stoichiometry is attributed to two causes: the decreasing initial volume fraction of the plastically deforming Zr metal which leads to the earlier formation of a contiguous, stress shielding carbide skeleton and the larger molar volume shrinkage during reaction which leads to pore formation in the final stages. A numerical model of the creep densification of a dynamically evolving microstructure predicts densities that are consistent with observations and confirm that the availability of a soft metal is primarily responsible for the achievement of such elevated densification during RHP. The ability to densify nonstoichiometric compositions like ZrC0.5 at pressures as low as 4 MPa offers an alternate route to fabricating dense nonstoichiometric carbides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of contact architecture, graphene defect density and metal-semiconductor work function difference on the resistivity of metal-graphene contacts have been investigated. An architecture with metal on the bottom of graphene is found to yield resistivities that are lower, by a factor of four, and most consistent as compared to metal on top of graphene. Growth defects in graphene film were found to further reduce resistivity by a factor of two. Using a combination of method and metal used, the contact resistivity of graphene has been decreased by a factor of 10 to 1200. +/-. 250 Omega mu m using palladium as the contact metal. While the improved consistency is due to the metal being able to contact uncontaminated graphene in the metal on the bottom architecture, lower contact resistivities observed on defective graphene with the same metal are attributed to the increased number of modes of quantum transport in the channel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Combustion synthesized (CS) cobalt catalysts deposited over two supports, alumina and silica doped alumina (SDA), were characterized and tested for its Fischer-Tropsch (FT) activity. The properties of CS catalysts were compared to catalysts synthesized by conventional impregnation method (IWI). The CS catalysts resulted in 40-70% increase in the yield of C6+ hydrocarbons compared to MI catalysts. The FT activity for CS catalysts showed formation of long chain hydrocarbon waxes (C24+) compared to the formation of middle distillates (C-10-C-20) for IWI synthesized catalysts, indicating higher hydrocarbon chain growth probability for CS catalysts. This is ascribed to the smaller crystallite sizes, increased degree of cobalt reduction and consequentially, a higher number of active metal sites, exposed over the catalyst surface. Additionally, 12-13% increase in the overall C6+ hydrocarbon yield is realized for SDA-CS catalysts, compared to Al2O3-CS catalysts. The improved performance of CS-SDA catalysts is attributed to 48% increase in cobalt dispersion compared to Al2O3 supported CS catalysts, which is again caused by the decrease in the cobalt -support interaction for SDA supports. The metal support interactions were analyzed using XPS and H-2 TPR-TPD experiments. Combustion method produced catalysts with smaller crystallite size (17-18 nm), higher degree of reduction (similar to 92%) and higher metal dispersion (16.1%) compared to the IWI method. Despite its enhanced properties, the CS catalysts require prominently higher reduction temperatures (similar to 1100-1200 K). The hydrocarbon product analysis for Al2O3 supported catalyst showed higher paraffin wax concentrations compared to SDA supported catalysts, due to the lower surface basicity of Al2O3. This work reveals the impact of the CS catalysts and the nature of support on FT activity and hydrocarbon product spectrum. (C) 2016 Elsevier Ltd. All rights reserved.