875 resultados para 16s rRNA sequencing
Resumo:
The 16S and 18S rRNA genes of planktonic organisms derived from five stations with nutrient gradients in Lake Donghu, China, were studied by PCR-denaturing gradient gel electrophoresis (DGGE) fingerprinting, and the relationships between the genetic diversity of the plankton community and biotic/abiotic factors are discussed. The concentrations of total nitrogen (TN), total phosphorus (TP), NH4-N and As were found to be significantly related (P < 0.05) to morphological composition of the plankton community. Both chemical and morphological analyses suggested that temporal heterogeneity was comparatively higher than spatial heterogeneity in Lake Donghu. Although the morphological composition was not identical to the DGGE fingerprints in characterizing habitat similarity, the two strongest eutrophic stations (I and II) were always initially grouped into one cluster. Canonical correspondence analysis suggested that the factors strongly correlated with the first two ordination axes were seasonally different. The concentrations of TN and TP and the densities of rotifers and crustaceans were generally the main factors related to the DGGE patterns of the plankton communities. The study suggested that genetic diversity as depicted by metagenomic techniques (such as PCR-DGGE fingerprinting) is a promising tool for ecological study of plankton communities and that such techniques are likely to play an increasingly important role in assessing the environmental conditions of aquatic habitats.
Resumo:
The complete mitochondrial genome sequence of the Chinese hook snout carp, Opsariichthys bidens, was newly determined using the long and accurate polymerase chain reaction method. The 16,611-nucleotide mitogenome contains 13 protein-coding genes, two rRNA genes (12S, 16S) 22 tRNA genes, and a noncoding control region. We use these data and homologous sequence data from multiple other ostariophysan fishes in a phylogenetic evaluation to test hypothesis pertaining to codon usage pattern of O. bidens mitochondrial protein genes as well as to re-examine the ostariophysan phylogeny. The mitochondrial genome of O. bidens reveals an alternative pattern of vertebrate mitochondrial evolution. For the mitochondrial protein genes of O. bidens, the most frequently used codon generally ends with either A or C, with C preferred over A for most fourfold degenerate codon families; the relative synonymous codon usage of G-ending codons is greatly elevated in all categories. The codon usage pattern of O. bidens mitochondrial protein genes is remarkably different from the general pattern found previously in the relatively closely 9 related zebrafish and most other vertebrate mitochondria. Nucleotide bias at third codon positions is the main cause of codon bias in the mitochondrial protein genes of O. bidens, as it is biased particularly in favor of C over A. Bayesian analysis of 12 concatenated mitochondrial protein sequences for O. bidens and 46 other teleostean taxa supports the monophyly of Cypriniformes and Otophysi and results in a robust estimate of the otophysan phylogeny. (C) 2007 Published by Elsevier B.V.
Resumo:
Based on morphological characters, peritrich ciliates (Class Olygohymenophorea, Subclass Peritrichia) have been subdivided into the Orders Sessilida and Mobilida. Molecular phylogenetic studies on peritrichs have been restricted to members of the Order Sessilida. In order to shed more light into the evolutionary relationships within peritrichs, the complete small subunit rRNA (SSU rRNA) sequences of four mobilid species, Trichodina nobilis, Trichodina heterodentata, Trichodina reticulata, and Trichodinella myakkae were used to construct phylogenetic trees using maximum parsimony, neighbor joining, and Bayesian analyses. Whatever phylogenetic method used, the peritrichs did not constitute a monophyletic group: mobilid and sessilid species did not cluster together. Similarity in morphology but difference in molecular data led us to suggest that the oral structures of peritrichs are the result of evolutionary convergence. In addition, Trichodina reticulata, a Trichodina species with granules in the center of the adhesive disc, branched separately from its congeners, Trichodina nobilis and Trichodina heterodentata, trichodinids without such granules. This indicates that granules in the adhesive disc might be a phylogenetic character of high importance within the Family Trichodinidae.
Resumo:
Using conserved primers and the PCR reaction, the growth hormone (GH) gene and the 3'-UTR of the large yellow croaker (Pseudosciaena crocea) were amplified and sequenced. The gene structure was analyzed and compared to the GH genes of 5 other percoid fish downloaded from Genbank. Also the GH gene of the large yellow croaker and the genes from 14 Percoidei and 2 Labroidei species were aligned using Clustal X. A matrix of 564 bp was used to construct the phylogenetic tree using maximum parsimony and neighbor-joining methods. Phylogenetic trees by the two methods are identical in most of the clades with high bootstrap support. The results are also identical to those from morphological data. In general, this analysis does not support the monophyly of the families Centropomidae and Carangidae. But our GH gene tree indicates that the representative species of the families Sparidae and Sciaenidae are a monophyletic group.
Resumo:
The phylogenetic relationships among peritrichs remain unresolved. In this study, the complete small subunit rRNA (SSrRNA) gene sequences of seven species (Epistylis galea, Campanella umbellaria, Carchesium polypinum, Zoothamnium arbuscula, Vaginicola crystallina, Ophrydium versatile, and Opercularia microdiscum) were determined. Trees were constructed using distance-matrix, maximum-likelihood and maximum-parsimony methods, all of which strongly supported the monophyly of the subclass Peritrichia. Within the peritrichs, 1) E. galea grouped with Opercularia microdiscum and Campanella umbellaria but not the other Epistylis species, which indicates that the genus Epistylis might not be monophyletic; 2) the topological position of Carchesium and Campanella suggested that Carchesium should be placed in the family Zoothammidae, or be elevated to a higher taxonomic rank, and that Campanella should be independent of the family Epistylididae, and probably be given a new rank; and 3) Opisthonecta grouped strongly with Asty/ozoon, which suggested that Opisthonecta species were not the ancestors of the stalked peritrichs.