989 resultados para 125-780
Resumo:
Grassroots groups – autonomous, not-for-profit groups made up of volunteers – and grassroots initiatives play an invaluable, yet often invisible, role in our communities. The informal processes and collective efforts of grassroots associations, social movements, self-help groups and local action collectives are central to civil society and community building. Grassroots leaders are critical to such initiatives, yet little is known about their influences, motivations, successes and challenges. This study aims to address this dearth in the research literature by noting the experiences of a sample of grassroots community leaders to help gain a greater knowledge about community leadership in action. In-depth semi-structured interviews were held with nine grassroots leaders from a broad cross-section of sectors of interest. The criteria for selection were that these leaders were not in a formal non-profit organisation, were not paid for their work yet were leading grassroots groups or initiatives involved in active community building, campaigning or self-help. The paper reflects on findings in regard to the formative experiences that impacted upon the community leaders’ direction in life, their beliefs and ideas about what it means to be a leader, the strategies they use to lead and challenges they continue to face, and the role of learning and support in maintaining and developing their roles. Finally, the key themes relating to grassroots leadership and how these leaders enhance their own effectiveness and resilience are explored.
Resumo:
Optical absorption and EPR studies of the mineral tenorite, a cupric oxide, which originated from Mexico and contains 54.40 wt% of CuO. EPR spectral results indicate two Cu(II) closely interacting ions to give a d2 type structure. The calculated spin Hamiltonian at Rt and LNT are g = 2.160 and D = 125 G . The intensity of resonance line is not the same in low and high field regions. The optical absorption spectrum is due to Cu(II) which three sets of energies indicating Cu(II) in two independent tetragonal C4v symmetry, in addition to d2 structure of octahedral coordination. The octahedral and tetragonal field parameters are compared with those reported for several other copper containing minerals.
What determines the health-related quality of life among regional and rural breast cancer survivors?
Resumo:
Objective: To assess the health-related quality of life (HRQoL) of regional and rural breast cancer survivors at 12 months post-diagnosis and to identify correlates of HRQoL. Methods: 323 (202 regional and 121 rural) Queensland women diagnosed with unilateral breast cancer in 2006/2007 participated in a population-based, cross-sectional study. HRQoL was measured using the Functional Assessment of Cancer Therapy, Breast plus arm morbidity (FACT-B+4) self-administered questionnaire. Results: In age-adjusted analyses, mean HRQoL scores of regional breast cancer survivors were comparable to their rural counterparts 12 months post-diagnosis (122.9, 95% CI: 119.8, 126.0 vs. 123.7, 95% CI: 119.7, 127.8; p>0.05). Irrespective of residence, younger (<50 years) women reported lower HRQoL than older (50+ years) women (113.5, 95% CI: 109.3, 117.8 vs. 128.2, 95%CI: 125.1, 131.2; p<0.05). Those women who received chemotherapy, reported two complications post-surgery, had poorer upper-body function than most, reported more stress, reduced coping, who were socially isolated, had no confidante for social-emotional support, had unmet healthcare needs, and low health self-efficacy reported lower HRQoL scores. Together, these factors explained 66% of the variance in overall HRQoL. The pattern of results remained similar for younger and older age groups. Conclusions and Implications: The results underscore the importance of supporting and promoting regional and rural breast cancer programs that are designed to improve physical functioning, reduce stress and provide psychosocial support following diagnosis. Further, the information can be used by general practitioners and other allied health professionals for identifying women at risk of poorer HRQoL.
Resumo:
The student-teacher relationship should be a critical factor for successful teaching and learning in design education. In tradition, the relationship is defined as a master-apprentice, so design teachers’ visual assessment capability and technical standards significantly affect students’ quality of learning and achievements. However, there are some negative aspects of the master-apprentice relationship in design education that it may restrict student experiences to cultural diversity and interdisciplinary learning through various interactions with other students. A visual design subject was designed to adapt a new learning method that is to share students’ work and assessment through an asynchronous communication tool. This method was expected to reduce the negative aspects of the master-apprentice relationship and enhance peer-to-peer interactions and individualistic collaboration. A survey with two types of student groups in terms of their levels of participation was conducted to evaluate student experiences to this method. The outcomes implicate that online peer assessment is helpful to reduce the negative aspects of master-apprentice relation and can be useful for achieving the ultimate purpose of design education.
Resumo:
Migraine is a painful disorder for which the etiology remains obscure. Diagnosis is largely based on International Headache Society criteria. However, no feature occurs in all patients who meet these criteria, and no single symptom is required for diagnosis. Consequently, this definition may not accurately reflect the phenotypic heterogeneity or genetic basis of the disorder. Such phenotypic uncertainty is typical for complex genetic disorders and has encouraged interest in multivariate statistical methods for classifying disease phenotypes. We applied three popular statistical phenotyping methods—latent class analysis, grade of membership and grade of membership “fuzzy” clustering (Fanny)—to migraine symptom data, and compared heritability and genome-wide linkage results obtained using each approach. Our results demonstrate that different methodologies produce different clustering structures and non-negligible differences in subsequent analyses. We therefore urge caution in the use of any single approach and suggest that multiple phenotyping methods be used.
Resumo:
We report numerical analysis and experimental observation of strongly localized plasmons guided by triangular metal wedges and pay special attention to the effect of smooth (nonzero radius) tips. Dispersion, dissipation, and field structure of such wedge plasmons are analyzed using the compact two-dimensional finite-difference time-domain algorithm. Experimental observation is conducted by the end-fire excitation and near-field scanning optical microscope detection of the predicted plasmons on 40°silver nanowedges with the wedge tip radii of 20, 85, and 125 nm that were fabricated by the focused-ion beam method. The effect of smoothing wedge tips is shown to be similar to that of increasing wedge angle. Increasing wedge angle or wedge tip radius results in increasing propagation distance at the same time as decreasing field localization (decreasing wave number). Quantitative differences between the theoretical and experimental propagation distances are suggested to be due to a contribution of scattered bulk and surface waves near the excitation region as well as the addition of losses due to surface roughness. The theoretical and measured propagation distances are several plasmon wavelengths and are useful for a range of nano-optical applications
Resumo:
Advances in tissue engineering have traditionally led to the design of scaffold- or matrix-based culture systems that better reflect the biological, physical and biochemical environment of the natural extracellular matrix. Although their clinical applications in regenerative medicine tend to receive most of the attention, it is obvious that other areas of biomedical research could be well served by the powerful tools that have already been developed in tissue engineering. In this article, we review the recent literature to demonstrate how tissue engineering platforms can enhance in vitro and in vivo models of tumorigenesis and thus hold great promise to contribute to future cancer research.
Resumo:
This paper reports research undertaken as part of a larger project in which we examined whether and how values and beliefs communicated by Australian politicians have shaped decades of health policy and influenced health outcomes for Aboriginal and Torres Strait Islander Peoples of Australia. To first characterise those values and beliefs we analysed the public statements of the politicians responsible nationally for the health of Aboriginal and Torres Strait Islander Peoples 1972–2001, using critical discourse analysis. We found that four discourses, communicated through words, phrases, sentences and grammatical structures, dominated public statements over the study period. These four discourses focused on the competence and capacity of Aboriginal and Torres Strait Islander Peoples to “manage”; matters of control of and responsibility for the health of Aboriginal and Torres Strait Islander Peoples; Aboriginal and Torres Strait Islander Peoples as “Other”; and the nature of the “problem” concerning the health of Aboriginal and Torres Strait Islander Peoples. Analysis of the discursive elements contributing to shaping these four discourses is reported in this paper.
Resumo:
Near-infrared spectroscopy is a somewhat unutilised technique for the study of minerals. The technique has the ability to determine water content, hydroxyl groups and transition metals. In this paper we show the application of NIR spectroscopy to the study of selected minerals. The structure and spectral properties of two Cu-tellurite minerals graemite and teineite are compared with bismuth containing tellurite mineral smirnite by the application of NIR and IR spectroscopy. The position of Cu2+ bands and their splitting in the electronic spectra of tellurites are in conformity with octahedral geometry distortion. The spectral pattern of smirnite resembles graemite and the observed band at 10855 cm-1 with a weak shoulder at 7920 cm-1 is identified as due to Cu2+ ion. Any transition metal impurities may be identified by their bands in this spectral region. Three prominent bands observed in the region of 7200-6500 cm-1 are the overtones of water whilst the weak bands observed near 6200 cm-1in tellurites may be attributed to the hydrogen bonding between (TeO3)2- and H2O. The observation of a number of bands centred at around 7200 cm-1 confirms molecular water in tellurite minerals. A number of overlapping bands in the low wavenumbers 4500-4000 cm-1 is the result of combinational modes of (TeO3)2−ion. The appearance of the most intense peak at 5200 cm-1 with a pair of weak bands near 6000 cm-1 is a common feature in all the spectra and is related to the combinations of OH vibrations of water molecules, and bending vibrations ν2 (δ H2O). Bending vibrations δ H2O observed in the IR spectra shows a single band for smirnite at 1610 cm-1. The resolution of this band into number of components is evidenced for non-equivalent types of molecular water in graemite and teineite. (TeO3)2- stretching vibrations are characterized by three main absorptions at 1080, 780 and 695 cm-1.
Resumo:
Management of acute heart failure is an important consideration in critical care. Mechanical support of the failing heart is crucial for improving health outcomes. The most common Australasian application of intraaortic balloon counterpulsation (IABP) is in the setting of cardiogenic shock. High end users of IABP (>37/annum) demonstrate significantly lower mortality for cardiogenic shock managed with IABP (p <0.001) in contrast to hospitals which employ limited IABP (<4/annum). This underscores the importance of proficiency in managing patient receiving IABP support. Nurses play a crucial role in carding for patients with acute heart failure. This paper summarises care considerations for management of the IABP.
Resumo:
The thermal analysis of euchroite shows two mass loss steps in the temperature range 100 to 105°C and 185 to 205°C. These mass loss steps are attributed to dehydration and dehydroxylation of the mineral. Hot stage Raman spectroscopy (HSRS) has been used to study the thermal stability of the mineral euchroite, a mineral involved in a complex set of equilibria between the copper hydroxy arsenates: euchroite Cu2(AsO4)(OH).3H2O → olivenite Cu2(AsO4)(OH) → strashimirite Cu8(AsO4)4(OH)4.5H2O → arhbarite Cu2Mg(AsO4)(OH)3. Hot stage Raman spectroscopy inolves the collection of Raman spectra as a function of the temperature. HSRS shows that the mineral euchroite decomposes between 125 and 175 °C with the loss of water. At 125 °C, Raman bands are observed at 858 cm-1 assigned to the ν1 AsO43- symmetric stretching vibration and 801, 822 and 871 cm-1 assigned to the ν3 AsO43- (A1) antisymmetric stretching vibration. A distinct band shift is observed upon heating to 275 °C. At 275 °C the four Raman bands are resolved at 762, 810, 837 and 862 cm-1. Further heating results in the diminution of the intensity in the Raman spectra and this is attributed to sublimation of the arsenate mineral. Hot stage Raman spectroscopy is most useful technique for studying the thermal stability of minerals especially when only very small amounts of mineral are available.
Resumo:
The transition of cubic indium hydroxide to cubic indium oxide has been studied by thermogravimetric analysis complimented with hot stage Raman spectroscopy. Thermal analysis shows the transition of In(OH)3 to In2O3 occurs at 219°C. The structure and morphology of In(OH)3 synthesised using a soft chemical route at low temperatures was confirmed by X-ray diffraction and scanning electron microscopy. A topotactical relationship exists between the micro/nano-cubes of In(OH)3 and In2O3. The Raman spectrum of In(OH)3 is characterised by an intense sharp band at 309 cm-1 attributed to ν1 In-O symmetric stretching mode, bands at 1137 and 1155 cm-1 attributed to In-OH δ deformation modes, bands at 3083, 3215, 3123 and 3262 cm-1 assigned to the OH stretching vibrations. Upon thermal treatment of In(OH)3 new Raman bands are observed at 125, 295, 488 and 615 cm-1 attributed to In2O3. Changes in the structure of In(OH)3 with thermal treatment is readily followed by hot stage Raman spectroscopy.