958 resultados para 1159
Resumo:
Most indices for the assessment of wear of various aetiologies include the distinction between 'enamel still present' and 'dentine exposed' for grading. Since the visual diagnosis of exposed dentine has not yet been validated, the present study is a first attempt to investigate its accuracy and consistency. Sixty-one examiners (23 scientists, 18 university dentists and 20 dental students) were asked to diagnose 49 tooth areas with different grades of wear and to decide whether dentine was exposed (positive test) or not (negative test). Afterwards, the teeth were histologically evaluated. In 44 areas, dentine (also in all cases with minor wear) was exposed, and in 5 areas enamel was present. Overall sensitivity was 0.65, specificity 0.88 and the proportion of correct diagnoses was 0.67. The diagnosis 'dentine is exposed' was about 5 times as likely and the diagnosis 'dentine is not exposed' half as likely to come from an area with exposed dentine than from an enamel-covered area. The closeness of the visual diagnosis to the histological findings was only fair (kappa=0.27), no significant impact of professional experience was found. For inter- and intra-examiner agreement, kappa was 0.28 and 0.55, respectively. It was concluded that the diagnosis of exposed dentine is difficult.
Resumo:
A prerequisite for preventive measures is to diagnose erosive tooth wear and to evaluate the different etiological factors in order to identify persons at risk. No diagnostic device is available for the assessment of erosive defects. Thus, they can only be detected clinically. Consequently, erosion not diagnosed in the early stage may render timely preventive measures difficult. In order to assess the risk factors, patient should record their dietary intake for a distinct period of time. Then a dentist can determine the erosive potential of the diet. Particularly, patients with more than four dietary acid intakes have a higher risk for erosion when other risk factors (such as holding the drink in the mouth) are present. Regurgitation of gastric acids (reflux, vomiting, alcohol abuse, etc.) is a further important risk factor for the development of erosion which has to be taken into account. Based on these analyses, an individually tailored preventive program may be suggested to the patients. It may comprise dietary advice, optimization of fluoride regimes, stimulation of salivary flow rate, use of buffering medicaments and particular motivation for nondestructive toothbrushing habits with a low abrasive toothpaste. The frequent use of fluoride gel and fluoride solution in addition to fluoride toothpaste offers the opportunity to reduce somewhat abrasion of tooth substance. It is also advisable to avoid abrasive tooth cleaning and whitening products, since they may remove the pellicle and may render teeth more susceptible to erosion. Since erosion, attrition and abrasion often occur simultaneously all causative components must be taken into consideration when planning preventive strategies.
Resumo:
The mineral in our teeth is composed of a calcium-deficient carbonated hydroxyapatite (Ca10-xNax(PO4)6-y(CO3)z(OH)2-uFu). These substitutions in the mineral crystal lattice, especially carbonate, renders tooth mineral more acid soluble than hydroxyapatite. During erosion by acid and/or chelators, these agents interact with the surface of the mineral crystals, but only after they diffuse through the plaque, the pellicle, and the protein/lipid coating of the individual crystals themselves. The effect of direct attack by the hydrogen ion is to combine with the carbonate and/or phosphate releasing all of the ions from that region of the crystal surface leading to direct surface etching. Acids such as citric acid have a more complex interaction. In water they exist as a mixture of hydrogen ions, acid anions (e.g. citrate) and undissociated acid molecules, with the amounts of each determined by the acid dissociation constant (pKa) and the pH of the solution. Above the effect of the hydrogen ion, the citrate ion can complex with calcium also removing it from the crystal surface and/or from saliva. Values of the strength of acid (pKa) and for the anion-calcium interaction and the mechanisms of interaction with the tooth mineral on the surface and underneath are described in detail.
Resumo:
The clinical diagnosis 'erosion' is made from characteristic deviations from the original anatomical tooth morphology, thus, distinguishing acid induced tissue loss from other forms of wear. Primary pathognomonic features are shallow concavities on smooth surfaces occurring coronal from the enamel-cementum junction. Problems from diagnosing occlusal surfaces and exposed dentine are discussed. Indices for recording erosive wear include morphological as well as quantitative criteria. Currently, various indices are used making the comparison of prevalence studies difficult. The most important and frequently used indices are described. In addition to recording erosive lesions, the assessment of progression is important as the indication of treatment measures depends on erosion activity. A number of evaluated and sensitive methods for in vitro and in situ approaches are available, but the fundamental problem for their clinical use is the lack of re-identifiable reference areas. Tools for clinical monitoring are described.
Resumo:
Dental erosion is often described solely as a surface phenomenon, unlike caries where it has been established that the destructive effects involve both the surface and the subsurface region. However, besides removal and softening of the surface, erosion may show dissolution of mineral underneath the surface. There is some evidence that the presence of this condition is growing steadily. Hence, erosive tooth wear is becoming increasingly significant in the management of the long-term health of the dentition. What is considered as an acceptable amount of wear is dependent on the anticipated lifespan of the dentition and, therefore, is different for deciduous compared to permanent teeth. However, erosive damage to the permanent teeth occurring in childhood may compromise the growing child's dentition for their entire lifetime and may require repeated and increasingly complex and expensive restoration. Therefore, it is important that diagnosis of the tooth wear process in children and adults is made early and adequate preventive measures are undertaken. These measures can only be initiated when the risk factors are known and interactions between them are present. A scheme is proposed which allows the possible risk factors and their relation to each other to be examined.
Resumo:
This in vitro study aimed to assess the speed and caries removal effectiveness of four different new and conventional dentine excavation methods. Eighty deciduous molars were assigned to four groups. Teeth were sectioned longitudinally through the lesion centre. Images of one half per tooth were captured by light microscope and confocal laser scanning microscopy (CLSM) to assess the caries extension. The halves were then reassembled and caries removed using round carbide bur (group 1), Er:YAG laser (group 2), hand excavator (group 3) and a polymer bur (group 4). The time needed for the whole excavation in each tooth was registered. After excavation, the halves were photographed by light microscope. Caries extension obtained from CLSM images were superimposed on the post-excavation images, allowing comparison between caries extension and removal. The regions where caries and preparation limits coincided, as well as the areas of over- and underpreparation, were measured. Steel bur was the fastest method, followed by the polymer bur, hand excavator and laser. Steel bur exhibited also the largest overpreparation area, followed by laser, hand excavator and polymer bur. The largest underpreparation area was found using polymer bur, followed by laser, hand excavator and steel bur. Hand excavator presented the longest coincidence line, followed by polymer and steel burs and laser. Overall, hand excavator seemed to be the most suitable method for carious dentine excavation in deciduous teeth, combining good excavation time with effective caries removal.
Resumo:
The laser device DIAGNOdent developed for the detection of occlusal caries has limited value on approximal surfaces. The aim of this study was to develop and to test a new laser fluorescence (LF) device for the detection of approximal caries. Light with a wavelength of 655 nm was transported to the approximal surface using two different sapphire fibre tips. Seventy-five teeth were selected from a pool of extracted permanent human molars, frozen at -20 degrees C until use. Before being measured, they were defrosted, cleaned and calculus was removed with a scaler. The molars were set in blocks simulating the contact area of adults. Bitewing radiographs were obtained using Kodak Insight films. After two independent assessments with the new LF device, the teeth were histologically prepared, and assessed for caries extension. Using the laser, specificity values for D1 threshold (outer half of enamel), D2 threshold (inner half of enamel), D3 threshold (dentine) ranged between 0.81 and 0.93, sensitivity between 0.84 and 0.92 with no difference between the two tips. Bitewing radiography showed an inferior performance compared to LF (p<0.05). Intraex aminer reproducibility was high (kappa>.74). The new LF system might be a useful additional tool in detecting approximal caries. Because of its good reproducibility, it could be used to monitor caries regression or progression on approximal surfaces.
Resumo:
Biological factors such as saliva, acquired dental pellicle, tooth structure and positioning in relation to soft tissues and tongue are related to dental erosion development. Saliva has been shown to be the most important biological factor in the prevention of dental erosion. It starts acting even before the acid attack, with the increase of the salivary flow rate as a response to the acidic stimuli. This creates a favorable scenario, increasing the buffering system of saliva and effectively diluting and clearing acids on dental surfaces during the erosive challenge. Saliva plays a role in the formation of the acquired dental pellicle, which acts as a perm-selective membrane preventing contact of the acid with the tooth surf aces. The protective level of the pellicle seems to be regulated by its composition, thickness and maturation time. Due to its mineral content, saliva can also prevent demineralization as well as enhance remineralization. However, these preventive and reparative factors of saliva may not be enough against highly erosive challenges, leading to erosion development. The progress rate of erosion can be significantly influenced by the type of dental substrate, occurrence of mechanical and chemical attacks, fluoride exposure, and also by contact with the oral soft tissues and tongue.
Resumo:
Acidic or EDTA-containing oral hygiene products and acidic medicines have the potential to soften dental hard tissues. The low pH of oral care products increases the chemical stability of some fluoride compounds, favors the incorporation of fluoride ions in the lattice of hydroxyapatite and the precipitation of calcium fluoride on the tooth surface. This layer has some protective effect against an erosive attack. However, when the pH is too low or when no fluoride is present these protecting effects are replaced by direct softening of the tooth surface. Xerostomia or oral dryness can occur as a consequence of medication such as tranquilizers, anti-histamines, anti-emetics and anti-parkinsonian medicaments or of salivary gland dysfunction e.g. due to radiotherapy of the oral cavity and the head and neck region. Above all, these patients should be aware of the potential demineralization effects of oral hygiene products with low pH and high titratable acids. Acetyl salicylic acid taken regularly in the form of multiple chewable tablets or in the form of headache powder as well chewing hydrochloric acids tablets for treatment of stomach disorders can cause erosion. There is most probably no direct association between asthmatic drugs and erosion on the population level. Consumers, patients and health professionals should be aware of the potential of tooth damage not only by oral hygiene products and salivary substitutes but also by chewable and effervescent tablets. Additionally, it can be assumed that patients suffering from xerostomia should be aware of the potential effects of oral hygiene products with low pH and high titratable acids.
Resumo:
During and after an erosive challenge, behavioral factors play a role in modifying the extent of erosive tooth wear. The manner that dietary acids are introduced into the mouth (gulping, sipping, use of a straw) will affect how long the teeth are in contact with the erosive challenge. The frequency and duration of exposure to an erosive agent is of paramount importance. Night-time exposure (e.g. baby bottle-feeding) to erosive agents may be particularly destructive because of the absence of salivary flow. Health-conscious individuals tend to ingest acidic drinks and juices more frequently and tend to have higher than average oral hygiene. While good oral hygiene is of proven value in the prevention of periodontal disease and dental caries, frequent toothbrushing with abrasive oral hygiene products may enhance erosive tooth wear. Unhealthy lifestyles such as consumption of designer drugs, alcopops and alcohol abuse are other important behavioral factors.